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Banach space approximation property

Definition
A Banach space X has the approximation property (AP) if there exists
a net

Tα ∈ F (X ) = {finite rank linear maps : X → X}

such that Tα → idX uniformly on compact subsets of X .

Studied by Grothendieck, who asked : Does there exist X without AP ?

Answer : YES (Enflo 70’s, artificial example).
Only natural example : B(`2) (Szankowski 81).

Interesting open question : Find other examples of natural Banach
spaces, for which the obstruction to AP is understandable.
Conjecture : C∗red (SL(3,Z)), or C∗(F2).
Hard because it is difficult to understand bounded operators between
C∗-algebras. But completely bounded operators are nicer...
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Operator space approximation property

Notation : K is the C∗-algebra of compact operators on `2.

Definition
An operator space X has the operator space approximation property
(OAP) if there is a net Tα ∈ F (X ) such that Tα ⊗ id → idX⊗minK
uniformly on compact subsets of X ⊗min K.

A has CBAP if moreover supα ‖Tα‖cb <∞.

Of course, CBAP =⇒ OAP =⇒ AP.
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Previous results

Theorem (Haagerup ’79)

If Γ is a free group, or Γ = SL(2,Z), then C∗red (Γ) has CBAP with
constant 1.

Theorem (Haagerup ’86)

If Γ = SL(2,Z) n Z2, then C∗red (Γ) does not have CBAP. Hence, the
same holds for SL(3,Z).

BUT (Haagerup and Kraus 94) C∗red (Γ) has OAP.
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Main results

Main Theorem 1
Γ = SL(3,Z). C∗red (Γ) does not have OAP.

Haagerup and de Laat extended Theorem 1 to Γ = lattice in a simple
Lie group of higher rank and finite center.

Main Theorem 2 (real)

If 1 ≤ p < 4/3 or 4 < p <∞, Lp(VN(SL(3,Z))) does not have CBAP.

Main Theorem 2 (p-adic)
Let F = Q` (=p-adic field). If p 6= 2 ∃n such that if Γ is a lattice in
SL(n,F ) then Lp(VN(Γ)) does not have CBAP.

Theorem 2 =⇒ Theorem 1 by a result of Junge-Ruan ’03 (valid with
SL(3,Z) replaced by any discrete hyperlinear group).

M. de la Salle NC Lp spaces without CBAP Wuhan, 06/06/12 6 / 15



From know on, we study some aspects of the proof of

Main Theorem 2 (real)

If 1 ≤ p < 4/3 or 4 < p <∞, Lp(VN(SL(3,Z))) does not have CBAP.
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A first reduction

Let us come back to Hard because it is difficult to understand bounded
operators between C∗-algebras. But completely bounded operators
are nicer...

Proposition

Let Γ be a discrete group, and X = C∗red (Γ) or X = Lp(VN(Γ)). If X has
the OAP or the CBAP, then the maps Tα can be taken as Fourier
multipliers, i.e. as maps of the form mϕα for ϕα : Γ→ C of finite
support.

Fourier multiplier : mϕλ(s) = ϕ(s)λ(s).
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Schur multipliers

For a = (ai,j) ∈ Mn, Schur multiplierMa : a ∈ Mn 7→ (ai,jxi,j) ∈ Mn.

(Bożejko-Fendler characterization) : for ϕ : Γ→ C,

‖Tϕ‖cb(C∗
λ(Γ),C∗

λ(Γ)) = sup
n∈N,s1,...,sn,t1,...tn∈Γ

‖M
(ϕ(s−1

i tj ))
‖cb(Mn,Mn) =: ‖ϕ‖cb.

Theorem (Haagerup, Bożejko-Fendler)

If Γ is a discrete group, C∗red (Γ) has CBAP iff Γ is weakly amenable.

A discrete locally compact group G is weakly amenable if there
is a sequence ϕn : G→ C of functions with finite supportcontinuous
functions with compact support such that :

limn ϕn(s) = 1 uniformly on compact subsets
supn ‖ϕn‖cb <∞.
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1 < p <∞ case

Notation : ‖ϕ‖p−cb := supn∈N,s1,...,sn,t1,...tn∈Γ ‖M(ϕ(s−1
i tj ))
‖cb(Sn

p ,Sn
p ).

Definition
A locally compact group G has the “p-variant of weak amenability” if
there is a sequence ϕn : G→ C of continuous functions with compact
support such that :

limn ϕn(s) = 1 uniformly on compact subsets
supn ‖ϕn‖p−cb <∞.

Only one implication is known : if Γ is a discrete group

Lp(VN(Γ)) has CBAP =⇒ Γ has the “p-variant of weak amenability”.

M. de la Salle NC Lp spaces without CBAP Wuhan, 06/06/12 10 / 15



A second reduction

Theorem (Haagerup for p =∞,LdlS for p <∞)

Let Γ = SL(3,Z) and G = SL(3,R). If 1 ≤ p ≤ ∞ then

Γ is p-weakly amenable⇐⇒ G is p-weakly amenable.

(and this holds more generally if Γ is a lattice in a locally compact
group G). Reason = induction.

We are left to prove that if p > 4 then G = SL(3,R) is not “p-weakly
amenable”.
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Working with SL(3,R).
Consider the compact subgroup K = SO(3,R) ⊂ SL(3,R) = G.
Remark that replacing ϕ : G→ C by ϕ̃ : g 7→

∫
K×K ϕ(kgk ′)dkdk ′ does

not increase ‖ϕ‖p−cb.

Proof : for s1, . . . , sn, t1, . . . , tn ∈ G the matrix (ϕ̃(s−1
i tj))i,j≤n is the

average over K × K of the matrix (ϕ((sik)−1tjk ′))i,j≤n.

Hence, the following result implies that SL(3,R) is not p-weakly
amenable :

Theorem (Lafforgue-dlS)

Let p > 4. There is constants C, α > 0 such that :
If ϕ : K\G/K → C is a continuous K -biinvariant function on G such
that ‖ϕ‖p−cb <∞, then l = lims→∞ ϕ(s) exists, and

|ϕ(s)− l | ≤ C‖s‖−α‖ϕ‖p−cb

(for s ∈ M3(R), ‖s‖ is the operator norm).
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Idea of proof of L-dlS Theorem

Main ingredient : S2 = unit sphere in R3. For −1 < δ < 1, consider
Tδ : L2(S2)→ L2(S2) defined by

Tδf (x) = average of f (y) on the circle {y , 〈x , y〉 = δ}.

Proposition
Tδ ∈ Sp if and only if p > 4.
If |δ| ≤ 1/2, ‖Tδ − T0‖Sp ≤ C|δ|1/2−2/p.

Connection with SL(3,R) : see U = SO(2,R) ⊂ SO(3,R) = K by

A 7→
(

1 0
0 A

)
. Then K/U ' S2 via kU 7→ kv where v = (1,0,0) ∈ S2.

And U\K/U ' [−1,1] via i : UkU 7→ 〈kv , v〉.
So that Tδ corresponds to f ∈ L2(K/U) 7→

∫
U f (·uk)du where k ∈ K is

such that i(k) = δ.
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Idea of proof of L-dlS Theorem (2)

(singular value decomposition) K\G/K ' {λ1 ≥ λ2 ≥ λ3,
∑
λi = 0}

with the identification λ1, λ2, λ3 7→ D(λ) = Kdiag(eλ1 ,eλ2 ,eλ3)K .

For any λ ∈ R, k ∈ K 7→ kD(λ,−λ/2,−λ/2)K ∈ G/K induces a map
qλ : S2 ' K/U → G/K .
Key property : For any λ, µ ∈ R, if x , y ∈ S2, we have that 〈x , y〉
depends only on qµ(x)−1qλ(y) in K\G/K .

Consequence : if ψλ,µ(δ) = ϕ(qµ(x)−1qλ(y)) for any x , y ∈ S2 such
that 〈x , y〉 = δ, then the Schur multiplierMψλ,µ on Sp(L2(S2)) “defined”
by (ax ,y )x ,y∈S2 7→ (ψλ,µ(〈x , y〉)ax ,y )x ,y∈S2 has norm at most ‖ϕ‖p−cb.
But Mψλ,µ(Tδ) = ψλ,µ(δ). So, using the previous proposition, one gets

|ψλ,µ(δ)− ψλ,µ(0)| ≤ ‖ψλ,µ(δ)Tδ − ψλ,µ(0)T0‖ ≤ C
√
|δ|.

One concludes taking a good choice of λ, µ, δ.
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Thank you for you attention !
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