Non-commutative L_p spaces without the completely bounded approximation property ¹

Mikael de la Salle

CNRS, Université de Franche Comté (Besançon)

Wuhan, June 6th 2012

1. joint work with Vincent Lafforgue, CNRS

M. de la Salle

- Banach space approximation property
- Operator space approximation property
- Main results
- Overline of proof : Schur multipliers on the Schatten class

Banach space approximation property

Definition

A Banach space X has the approximation property (AP) if there exists a net

$$\mathcal{T}_{lpha} \in \mathcal{F}(\mathcal{X}) = \{ ext{finite rank linear maps} : \mathcal{X}
ightarrow \mathcal{X} \}$$

such that $T_{\alpha} \rightarrow id_X$ uniformly on compact subsets of X.

Studied by Grothendieck, who asked : Does there exist X without AP?

Answer : YES (Enflo 70's, artificial example). Only natural example : $B(\ell^2)$ (Szankowski 81).

Interesting open question : Find other examples of natural Banach spaces, for which the obstruction to AP is understandable. **Conjecture** : $C^*_{red}(SL(3,\mathbb{Z}))$, or $C^*(F_2)$. Hard because it is difficult to understand bounded operators between C^* -algebras. But completely bounded operators are nicer...

Operator space approximation property

Notation : \mathcal{K} is the *C*^{*}-algebra of compact operators on ℓ^2 .

Definition

An operator space X has the operator space approximation property (OAP) if there is a net $T_{\alpha} \in F(X)$ such that $T_{\alpha} \otimes id \rightarrow id_{X \otimes min}\mathcal{K}$ uniformly on compact subsets of $X \otimes_{min} \mathcal{K}$.

A has *CBAP* if moreover $\sup_{\alpha} \|T_{\alpha}\|_{cb} < \infty$.

Of course, CBAP \Longrightarrow OAP \Longrightarrow AP.

Theorem (Haagerup '79)

If Γ is a free group, or $\Gamma = SL(2, \mathbb{Z})$, then $C^*_{red}(\Gamma)$ has CBAP with constant 1.

Theorem (Haagerup '86)

If $\Gamma = SL(2, \mathbb{Z}) \ltimes \mathbb{Z}^2$, then $C^*_{red}(\Gamma)$ does not have CBAP. Hence, the same holds for $SL(3, \mathbb{Z})$.

BUT (Haagerup and Kraus 94) $C^*_{red}(\Gamma)$ has OAP.

Main results

Main Theorem 1 $\Gamma = SL(3, \mathbb{Z}). C^*_{red}(\Gamma)$ does not have OAP.

Haagerup and de Laat extended Theorem 1 to Γ = lattice in a simple Lie group of higher rank and finite center.

Main Theorem 2 (real)

If $1 \le p < 4/3$ or $4 , <math>L_p(VN(SL(3,\mathbb{Z})))$ does not have CBAP.

Main Theorem 2 (p-adic)

Let $F = \mathbb{Q}_{\ell}$ (=p-adic field). If $p \neq 2 \exists n$ such that if Γ is a lattice in SL(n, F) then $L_p(VN(\Gamma))$ does not have CBAP.

Theorem 2 \implies Theorem 1 by a result of Junge-Ruan '03 (valid with $SL(3,\mathbb{Z})$ replaced by any discrete hyperlinear group).

M. de la Salle

From know on, we study some aspects of the proof of

Main Theorem 2 (real)

If $1 \le p < 4/3$ or $4 , <math>L_p(VN(SL(3,\mathbb{Z})))$ does not have CBAP.

Let us come back to Hard because it is difficult to understand bounded operators between C*-algebras. But completely bounded operators are nicer...

Proposition

Let Γ be a discrete group, and $X = C^*_{red}(\Gamma)$ or $X = L_p(VN(\Gamma))$. If X has the OAP or the CBAP, then the maps T_α can be taken as Fourier multipliers, i.e. as maps of the form m_{φ_α} for $\varphi_\alpha : \Gamma \to \mathbb{C}$ of finite support.

Fourier multiplier : $m_{\varphi}\lambda(s) = \varphi(s)\lambda(s)$.

Schur multipliers

For $a = (a_{i,j}) \in M_n$, Schur multiplier $\mathcal{M}_a : a \in M_n \mapsto (a_{i,j}x_{i,j}) \in M_n$. (Bożejko-Fendler characterization) : for $\varphi : \Gamma \to \mathbb{C}$,

$$\|T_{\varphi}\|_{cb(C^*_{\lambda}(\Gamma),C^*_{\lambda}(\Gamma))} = \sup_{n\in\mathbb{N},s_1,\ldots,s_n,t_1,\ldots,t_n\in\Gamma} \|\mathcal{M}_{(\varphi(s_i^{-1}t_j))}\|_{cb(M_n,M_n)} =: \|\varphi\|_{cb}.$$

Theorem (Haagerup, Bożejko-Fendler)

If Γ is a discrete group, $C^*_{red}(\Gamma)$ has CBAP iff Γ is weakly amenable.

A discrete locally compact group *G* is weakly amenable if there is a sequence $\varphi_n : G \to \mathbb{C}$ of functions with finite support continuous functions with compact support such that :

- $\lim_{n} \varphi_n(s) = 1$ uniformly on compact subsets
- $\sup_n \|\varphi_n\|_{cb} < \infty$.

1 case

Notation :
$$\|\varphi\|_{p-cb} := \sup_{n \in \mathbb{N}, s_1, \dots, s_n, t_1, \dots, t_n \in \Gamma} \|\mathcal{M}_{(\varphi(s_i^{-1}t_j))}\|_{cb(S_p^n, S_p^n)}.$$

Definition

A locally compact group *G* has the "*p*-variant of weak amenability" if there is a sequence $\varphi_n : G \to \mathbb{C}$ of continuous functions with compact support such that :

- $\lim_{n} \varphi_n(s) = 1$ uniformly on compact subsets
- $\sup_n \|\varphi_n\|_{p-cb} < \infty$.

Only one implication is known : if Γ is a **discrete** group

 $L_{\rho}(VN(\Gamma))$ has CBAP \Longrightarrow Γ has the " ρ -variant of weak amenability".

Theorem (Haagerup for $p = \infty$,LdlS for $p < \infty$) Let $\Gamma = SL(3, \mathbb{Z})$ and $G = SL(3, \mathbb{R})$. If $1 \le p \le \infty$ then

 Γ is *p*-weakly amenable \iff *G* is *p*-weakly amenable.

(and this holds more generally if Γ is a lattice in a locally compact group *G*). Reason = induction.

We are left to prove that if p > 4 then $G = SL(3, \mathbb{R})$ is not "*p*-weakly amenable".

Working with $SL(3, \mathbb{R})$.

Consider the compact subgroup $K = SO(3, \mathbb{R}) \subset SL(3, \mathbb{R}) = G$. Remark that replacing $\varphi : G \to \mathbb{C}$ by $\tilde{\varphi} : g \mapsto \int_{K \times K} \varphi(kgk') dkdk'$ does not increase $\|\varphi\|_{p-cb}$.

Proof : for $s_1, \ldots, s_n, t_1, \ldots, t_n \in G$ the matrix $(\widetilde{\varphi}(s_i^{-1}t_j))_{i,j \leq n}$ is the average over $K \times K$ of the matrix $(\varphi((s_ik)^{-1}t_jk'))_{i,j \leq n}$.

Hence, the following result implies that $SL(3, \mathbb{R})$ is not *p*-weakly amenable :

Theorem (Lafforgue-dlS)

Let p > 4. There is constants $C, \alpha > 0$ such that : If $\varphi : K \setminus G/K \to \mathbb{C}$ is a continuous K-biinvariant function on G such that $\|\varphi\|_{p-cb} < \infty$, then $I = \lim_{s \to \infty} \varphi(s)$ exists, and

 $|arphi(m{s}) - m{l}| \le C \|m{s}\|^{-lpha} \|arphi\|_{m{p}-m{cb}}$

(for $s \in M_3(\mathbb{R})$, ||s|| is the operator norm).

M. de la Salle

Idea of proof of L-dIS Theorem

Main ingredient : S^2 = unit sphere in \mathbb{R}^3 . For $-1 < \delta < 1$, consider $T_\delta : L^2(S^2) \to L^2(S^2)$ defined by

 $T_{\delta}f(x) = \text{ average of } f(y) \text{ on the circle } \{y, \langle x, y \rangle = \delta\}.$

Proposition

 $T_{\delta} \in S_{p}$ if and only if p > 4. If $|\delta| \leq 1/2$, $||T_{\delta} - T_{0}||_{S_{p}} \leq C|\delta|^{1/2-2/p}$.

Connection with $SL(3,\mathbb{R})$: see $U = SO(2,\mathbb{R}) \subset SO(3,\mathbb{R}) = K$ by $A \mapsto \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}$. Then $K/U \simeq S^2$ via $kU \mapsto kv$ where $v = (1,0,0) \in S^2$. And $U \setminus K/U \simeq [-1,1]$ via $i : UkU \mapsto \langle kv, v \rangle$. So that T_{δ} corresponds to $f \in L^2(K/U) \mapsto \int_U f(\cdot uk) du$ where $k \in K$ is such that $i(k) = \delta$.

Idea of proof of L-dIS Theorem (2)

(singular value decomposition) $K \setminus G/K \simeq \{\lambda_1 \ge \lambda_2 \ge \lambda_3, \sum \lambda_i = 0\}$ with the identification $\lambda_1, \lambda_2, \lambda_3 \mapsto D(\lambda) = Kdiag(e^{\lambda_1}, e^{\lambda_2}, e^{\lambda_3})K$.

For any $\lambda \in \mathbb{R}$, $k \in K \mapsto kD(\lambda, -\lambda/2, -\lambda/2)K \in G/K$ induces a map $q_{\lambda} : S^2 \simeq K/U \to G/K$.

Key property : For any $\lambda, \mu \in \mathbb{R}$, if $x, y \in S^2$, we have that $\langle x, y \rangle$ depends only on $q_{\mu}(x)^{-1}q_{\lambda}(y)$ in $K \setminus G/K$.

Consequence : if $\psi_{\lambda,\mu}(\delta) = \varphi(q_{\mu}(x)^{-1}q_{\lambda}(y))$ for any $x, y \in S^2$ such that $\langle x, y \rangle = \delta$, then the Schur multiplier $\mathcal{M}_{\psi_{\lambda,\mu}}$ on $S_p(L^2(S^2))$ "defined" by $(a_{x,y})_{x,y \in S^2} \mapsto (\psi_{\lambda,\mu}(\langle x, y \rangle)a_{x,y})_{x,y \in S^2}$ has norm at most $\|\varphi\|_{p-cb}$. But $\mathcal{M}_{\psi_{\lambda,\mu}}(T_{\delta}) = \psi_{\lambda,\mu}(\delta)$. So, using the previous proposition, one gets

$$|\psi_{\lambda,\mu}(\delta) - \psi_{\lambda,\mu}(\mathbf{0})| \le ||\psi_{\lambda,\mu}(\delta) T_{\delta} - \psi_{\lambda,\mu}(\mathbf{0}) T_{\mathbf{0}}|| \le C\sqrt{|\delta|}.$$

One concludes taking a good choice of λ, μ, δ .

M. de la Salle

Thank you for you attention !