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The Role of T1 Theorem in Harmonic Analysis

It is well-known the crucial role played by T 1 theorem in the analysis of
L2-boundedness of singular integrals.

The L2 boundedness of convolution type singular integrals.↔ Fourier Transforms

The L2 boundedness of nonconvolution type singular integrals.↔ T 1 Theorem
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The Role of T1 in Harmonic Analysis

Theorem

For a weakly defined operator T : C∞0 → (C∞0 )∗ whose kernel is a standard kernel
(satisfies the classical size and smoothness conditions) and T enjoys the weak
boundedness property.
Then the following statements are equivalent:

• T is L2 bounded;

• T 1 ∈ BMO and T ∗1 ∈ BMO.

I G. David and J.-L. Journé, A boundedness criterion for generalized
Calderón-Zygmund operators, Ann. of Math. 120, 1984
I G. David; J. -L. Journé; S. Semmes. Calderón–Zygmund operators,
para-accretive functions and interpolation, Rev. Mat. Iberoamericana 4, 1985
I T. Hytönen, An operator-valued Tb Theorem, J. Funct.Anal. 234, 2006
I T. Hytönen and L.Weis, A T 1 Theorem for integral transformations with
operator valued kernels, J. Reine Angew. Math. 599, 2006
I L. Grafakos, Classical and modern Fourier analysis, Pearson Education, Inc.,
Upper Saddle River, NJ, 2004.
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Why are they important?

¡¡The L2-boundedness of singular integral operator
is

essentially reduced to test the behavior of T 1 and T ∗1!!

The Fourier transform is not needed for the L2- boundedness of singular integrals.
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Classical BMO Spaces

For f ∈ Lloc(Rn), set

‖f ‖BMO = sup
B

1

|B|

∫
B

|f (x)− fB | dx ,

where the supremum is taken over all balls B in Rn.

BMO(Rn) = {f ∈ Lloc(Rn) : ‖f ‖BMO <∞} .

BMO ↔ L∞

Boundedness of classical singular integral

Interpolation theory

Carleson measure
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The BMO boundedness related to T1 Theorem

Theorem (Not every CZO maps BMOC into BMO)

A Calderón-Zygmund operator T : BMOC (Rn)→ BMO(Rn) is bounded if and
only if T 1 is a constant.

Recently, J. J. Betancor, R. Crescimbeni, J. C. Fariña, P. R. Stinga and J. L.
Torrea proved a T 1 criterion for the BMOH -boundedness of T .

I J. J. Betancor, R. Crescimbeni, J. C. Fariña, P. R. Stinga and J. L. Torrea, A
T 1 criterion for Hermite-Calderón-Zygmund operators on the BMOH(Rn) space
and applications, to appear in Ann. Sc. Norm. Sup. Pisa Cl. Sci.
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BMO-spaces related to Hermite operator H

Hermite operator: H = −∆ + |x |2.

f ∈ Lloc(Rn) is in BMOH(Rn) if

(i)
1

|B|

∫
B

|f (x)− fB | dx ≤ C , for every ball B in Rn, and

(ii)
1

|B|

∫
B

|f (x)| dx ≤ C , for every B = B(x0, r0), where x0 ∈ Rn and r0 ≥ γ(x0),

where fB =
1

|B|

∫
B

f (x) dx and γ(x) = 1
1+|x| .

‖f ‖BMOH (Rn) = inf{C ≥ 0 : (i) and (ii) hold}.

BMOH(Rn) =
{

f ∈ Lloc : ‖f ‖BMOH (Rn) <∞
}
.
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Hermite-Calderón-Zygmund operator

Definition

Let T be a bounded linear operator on L2(Rn) such that

Tf (x) =

∫
Rn

K (x , y)f (y) dy , f ∈ L2
c(Rn) and a.e. x /∈ supp(f ).

T is a Hermite-Calderón-Zygmund operator if

(i) |K (x , y)| ≤ C

|x − y |n
e−c[|x||x−y |+|x−y |2], for all x , y ∈ Rn with x 6= y ,

(ii) |K (x , y)− K (x , z)|+ |K (y , x)− K (z , x)| ≤ C
|y − z |
|x − y |n+1

, when

|x − y | > 2|y − z |.
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A T1 Theorem for the Boundedness in BMOH

Betancor etc. proved a T 1 criterion for the BMOH -boundedness of T .

Theorem (T1-type criterion for an Hermite-Calderón-Zygmund operator)

Let T be an Hermite-Calderón-Zygmund operator.
Then, the following two statements are equivalent:

• T is a bounded operator on BMOH(Rn);

• there exists C > 0 for which the following two conditions are satisfied

(i)
1

|B(x , γ(x))|

∫
B(x,γ(x))

|T1(y)| dy ≤ C, for every x ∈ Rn, and

(ii)

(
1 + log

(
γ(x)

s

))
1

|B(x , s)|

∫
B(x,s)

|T1(y)− (T1)B(x,s)| dy ≤ C , for every

x ∈ Rn and s > 0 such that 0 < s ≤ γ(x).
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The boundedness of the operators related with H

The maximal operators and Littlewood-Paley g -functions associated to the heat
and Poisson semigroups for H and the Hermite-Riesz transforms all are
Hermite-Calderón-Zygmund operators. Therefore the T 1 theorem could be
applied.

In fact, as application of the above T 1 theorem, Betancor etc. proved

Theorem (Harmonic analysis operators related to Hermite operator H)

The maximal operators and the Littlewood-Paley g-functions associated with the
heat {W H

t }t>0 and Poisson {PH
t }t>0 semigroups generated by H and the

Hermite-Riesz transforms are bounded from BMOH(Rn) into itself.
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The aims of our talk:

1 To give a T 1-type criterion for the boundedness of operator T in
BMO-spaces related with a Schrödinger operator ;

2 To give some applications of the T 1-type criterion with some operators in
Harmonic analysis such as the maximal operators, Littlewood–Paley
g -functions, Laplace transform type multipliers, Riesz transforms and
negative powers related with a Schrödinger operator L.
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Schrödinger operator L = −∆ + V

The time independent Schrödinger operator in Rn, n ≥ 3,

L := −∆ + V .

The nonnegative potential V satisfies a reverse Hölder inequality for some
q ≥ n/2; that is, there exists a constant C = C (q,V ) such that(

1

|B|

∫
B

V (y)q dy

)1/q

≤ C

|B|

∫
B

V (y) dy ,

for all balls B ⊂ Rn.
Associated to this potential, Z. Shen defines the critical radii function as

ρ(x) := sup
{

r > 0 :
1

rn−2

∫
B(x,r)

V (y) dy ≤ 1
}
, x ∈ Rn.

We have 0 < ρ(x) <∞.
I Z. Shen, Lp estimates for Schrödinger operators with certain potentials, Ann.
Inst. Fourier (Grenoble) 45 (1995), 513–546.
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BMOα–spaces related to L

f ∈ Lloc(Rn) is in BMOα
L (0 ≤ α ≤ 1), if

(i)
1

|B|

∫
B

|f (x)− fB | dx ≤ C |B|
α
n , for every ball B in Rn, and

(ii)
1

|B|

∫
B

|f (x)| dx ≤ C |B|
α
n , for every B = B(x0, r0), where x0 ∈ Rn and

r0 ≥ ρ(x0).

‖f ‖BMOα
L

= inf {C > 0 : C in (i) and (ii)} .
BMOα

L(Rn) =
{

f ∈ Lloc : ‖f ‖BMOα
L(Rn) <∞

}
. BMO0

L = BMOL.

The restriction α ≤ 1 in the definition above is necessary because if α > 1 then
the space only contains constant functions.
I J. Dziubański, G. Garrigós, T. Mart́ınez, J. L. Torrea and J. Zienkiewicz, BMO
spaces related to Schrödinger operators with potentials satisfying a reverse Hölder
inequality, Math. Z. 249 (2005), 329–356.

I B. Bongioanni, E. Harboure and O. Salinas, Weighted inequalities for negative
powers of Schrödinger operators, J. Math. Anal. Appl. 348 (2008), 12–27.
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Campanato-type description of BMOα
L–spaces

Let
Cα(Rn) = {f ∈ C (Rn) : |f (x)− f (y)| ≤ C |x − y |α} ,

[f ]Cα = sup
x,y∈Rn

x 6=y

|f (x)− f (y)|
|x − y |α

.

Recall that BMOα(Rn) = Cα(Rn) with ‖f ‖BMOα(Rn) ∼ [f ]Cα and 0 < α ≤ 1.
I S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann.
Scuola Norm. Sup. Pisa (3) 17 (1963), 175–188.
In our case there is s similar identification.

Proposition (Campanato-type description of BMOα
L)

Let 0 < α ≤ 1. A function f belongs to BMOα
L if and only if f ∈ Cα(Rn) and

|f (x)| ≤ Cρ(x)α, for all x ∈ Rn. Moreover, ‖f ‖BMOα
L
∼ [f ]Cα(Rn) + ‖f ρ−α‖L∞(Rn).

I B. Bongioanni, E. Harboure and O. Salinas, Weighted inequalities for negative
powers of Schrödinger operators, J. Math. Anal. Appl. 348 (2008), 12–27.
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γ-Schrödinger-Calderón-Zygmund operators

Definition (γ-Schrödinger-Calderón-Zygmund operators)

Let 0 ≤ γ < n, 1 < p ≤ q <∞, 1
q = 1

p −
γ
n . Let T be a bounded linear operator

from Lp(Rn) into Lq(Rn) such that

Tf (x) =

∫
Rn

K (x , y)f (y) dy , f ∈ Lp
c (Rn) and a.e. x /∈ supp(f ).

T is a γ-Schrödinger-Calderón-Zygmund operator with smoothness exponent
δ > 0 if for some constant C

(1) |K (x , y)| ≤ C

|x − y |n−γ

(
1 +
|x − y |
ρ(x)

)−N
, for all N > 0 and x 6= y, (size)

(2) |K (x , y)− K (x , z)|+ |K (y , x)− K (z , x)| ≤ C
|y − z |δ

|x − y |n−γ+δ
, when

|x − y | > 2|y − z |. (smoothness)

Note that every Hermite-Calderón-Zygmund operator is a classical
Calderón-Zygmund operator.
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Definition of T1

Suppose that f ∈ BMOα
L and R ≥ ρ(x0), x0 ∈ Rn. We define

Tf (x) = T
(
f χB(x0,R)

)
(x) +

∫
B(x0,R)c

K (x , y)f (y) dy , a.e. x ∈ B(x0,R).

The first term in the right hand side makes sense since f χB(x0,R) ∈ Lp
c (Rn).

The second term is absolutely convergent by the size condition of the kernel which
is different from the case of classical Laplacian.

So, T 1 is well defined.
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Main results: two T1-type criterions

Theorem (T1-type criterion in BMOα
L , 0 < α < 1)

Let T be a γ-Schrödinger-Calderón-Zygmund operator, γ ≥ 0, with smoothness
exponent δ, such that α + γ < min {1, δ}. Then, the following statements are
equivalent:

• T is bounded from BMOα
L into BMOα+γ

L ;

• there exists a constant C such that(
ρ(x)

s

)α
1

|B|1+ γ
n

∫
B

|T 1(y)− (T 1)B | dy ≤ C ,

for every ball B = B(x , s), x ∈ Rn and 0 < s ≤ 1
2ρ(x).
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T1 Theorem of Betancor etc.’s

Theorem (T1-type criterion for an Hermite-Calderón-Zygmund operator)

Let T be an Hermite-Calderón-Zygmund operator.
Then, the following two statements are equivalent:

• T is a bounded operator on BMOH(Rn);

• there exists C > 0 for which the following two conditions are satisfied

(i)
1

|B(x , γ(x))|

∫
B(x,γ(x))

|T1(y)| dy ≤ C, for every x ∈ Rn, and

(ii)

(
1 + log

(
γ(x)

s

))
1

|B(x , s)|

∫
B(x,s)

|T1(y)− (T1)B(x,s)| dy ≤ C , for every

x ∈ Rn and s > 0 such that 0 < s ≤ γ(x).
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Main results: two T1-type criterions

Theorem (T1-type criterion in BMOL, (α = 0))

Let T be a γ-Schrödinger-Calderón-Zygmund operator, 0 ≤ γ < min {1, δ}, with
smoothness exponent δ. Then, the following statements are equivalent:

• T is a bounded operator from BMOL into BMOγ
L;

• there exists a constant C such that

log

(
ρ(x)

s

)
1

|B|1+ γ
n

∫
B

|T 1(y)− (T 1)B | dy ≤ C ,

for every ball B = B(x , s), x ∈ Rn and 0 < s ≤ 1
2ρ(x).

For any 0 < α ≤ 1, if 0 < s ≤ 1
2ρ(x) then

1 + log ρ(x)
s ∼ log ρ(x)

s and 1 +
2α(( ρ(x)

s )
α
−1) log 2

2α−1 ∼
(
ρ(x)
s

)α
.

And limα→0 1 +
2α(( ρ(x)

s )
α
−1) log 2

2α−1 = 1 + log ρ(x)
s .

Therefore, the criterion of the case (α = 0) is indeed the limit case of the criterion
of the case (0 < α < 1).
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Main results: two T1-type criterions

We should note that our results are more general than the results of
Betancor,Crescimbeni, Farina. Stinga and Torrea.

1 Assumption: T : Lp → Lq(1 < p ≤ q <∞) instead of T : L2 → L2;

2 Result: T : BMOα
L → BMOα+γ

L instead of T : BMOH → BMOH .
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Application:
Pointwise multipliers in BMOα

L, 0 ≤ α < 1

Proposition (Pointwise Multipliers)

Let ψ be a measurable function on Rn. We denote by Tψ the multiplier operator
defined by Tψ(f ) = f ψ. Then

(A) Tψ is a bounded operator in BMOL if and only if ψ ∈ L∞(Rn) and there
exists C > 0 such that, for all balls B = B(x0, s) with 0 < s < 1

2ρ(x0),

log

(
ρ(x0)

s

)
1

|B|

∫
B

|ψ(y)− ψB | dy ≤ C .

(B) Tψ is a bounded operator in BMOα
L , 0 < α < 1, if and only if ψ ∈ L∞(Rn)

and there exists C > 0 such that, for all balls B = B(x0, s) with
0 < s < 1

2ρ(x0), (
ρ(x0)

s

)α
1

|B|

∫
B

|ψ(y)− ψB | dy ≤ C .
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Applications: Semigoups related with L
Semigroups related with L
• The heat–diffusion semigroup Wt ≡ e−tL: Wt is the solution of heat equation:

∂tu + Lu = 0.

Wt f (x) ≡ e−tLf (x) =

∫
Rn

Wt(x , y)f (y) dy , f ∈ L2(Rn), x ∈ Rn, t > 0.

• The generalized Poisson semigroups Pσt :

Pσt f (x) =
1

Γ(σ)

∫ ∞
0

e−rW t2

4r

f (x)
dr

r1−σ
.

When σ = 1
2 , Pσt is the classical Poisson operator Pt which is a solution of the

equation: ∂ttu = Lu.
And Pσt is a solution of the equation:

−Lxu +
1− 2σ

t
∂tu + ∂ttu = 0.

It is related with the extension problem for the fractional Laplacian.
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Applications: Operators related with semigroups

Maximal operators for the heat–diffusion semigroup Wt ≡ e−tL:

W∗f (x) = sup
t>0
|Wt f (x)| = ‖Wt f ‖L∞((0,∞),dt) .

Maximal operators for the generalized Poisson operators Pσt :

Pσ,∗t f (x) = sup
t>0
|Pσt f (x)| = ‖Pσt f (x)‖L∞((0,∞),dt) .

Littlewood–Paley g-function for the heat–diffusion semigroup:

gW(f )(x) =

(∫ ∞
0

|t∂tWt f (x)|2 dt

t

)1/2

= ‖t∂tWt f (x)‖
L2
(
(0,∞), dtt

).
Littlewood–Paley g-function for the Poisson semigroup:

gP(f )(x) =

(∫ ∞
0

|t∂tPt f (x)|2 dt

t

)1/2

= ‖t∂tPt f (x)‖
L2
(
(0,∞), dtt

).
Laplace transform type multipliers:

m(L)f (x) =

∫ ∞
0

a(t)Le−tLf (x) dt =

∫ ∞
0

a(t)∂tWt f (x) dt,

where a is a bounded function on [0,∞) and m(λ) = λ
∫∞
0

a(t)e−tλ dt.
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Applications:
The regularity estimates of some operators

We can get the regularity estimates of the above operators by proving that they
are γ-Schrödinger-Calderón-Zygmund operators and satisfy the conditions of the
T 1-type criterions.

Theorem (Regularity Estimates)

Let 0 ≤ α < min{1, 2− n
q}. The maximal operators associated with the heat

semigroup {Wt}t>0 and with the generalized Poisson operators {Pσt }t>0, the
Littlewood-Paley g-functions given in terms of the heat and the Poisson
semigroups, and the Laplace transform type multipliers m(L), are bounded from
BMOα

L into itself.

The T 1 Theorem can also be applied to Riesz Transforms related to L and
Negative Powers L−γ , γ > 0.
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Sketch proof of T1-type criterion for BMOα
L, 0 < α < 1

Proof:
First we shall see that the condition on T 1 implies that T is bounded from
BMOα

L into BMOα+γ
L .In order to do this, we will show that there exists C > 0

such that the properties (Ak) and (Bk) stated in the lemma of Boundedness
criterion hold for every k ∈ N and f ∈ BMOα

L .

Lemma (Boundedness criterion)

Let S be a linear operator defined on BMOα
L , 0 ≤ α ≤ 1. Then S is bounded from

BMOα
L into BMOα+γ

L , α+ γ ≤ 1, γ ≥ 0, if there exists C > 0 such that, for every
f ∈ BMOα

L and k ∈ N,

(Ak)
1

|Qk |1+
α+γ
n

∫
Qk

|Sf (x)| dx ≤ C‖f ‖BMOα
L

, and

(Bk) ‖Sf ‖BMOα+γ(Q∗k )
≤ C‖f ‖BMOα

L
, where BMOα(Q∗k ) denotes the usual BMOα

space on the ball Q∗k .
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Sketch proof of T1-type criterion for BMOα
L, 0 < α < 1

We begin with (Ak). We can divide Tf as

Tf (x) = T
(
(f − fQk

)χQ∗∗∗k

)
(x) +

∫
(Q∗∗∗k )c

K (x , y)(f (y)− fQk
) dy + fQk

T 1(x),

a.e. x ∈ Qk .

As T maps Lp(Rn) into Lq(Rn), 1
q = 1

p −
γ
n , by Hölder’s inequality, we have

1

|Qk |1+
α+γ
n

∫
Qk

∣∣T ((f − fQk
)χQ∗∗∗k

)
(x)
∣∣ dx ≤ C‖f ‖BMOα

L
.
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Sketch proof of T1-type criterion for BMOα
L, 0 < α < 1

On the other hand, given x ∈ Qk , we have ρ(x) ∼ ρ(xk) and if |xk − y | > 2jρ(xk),
j ∈ N, then |x − y | ≥ 2j−1ρ(xk). By the size condition of the kernel K , for any
N > α we also have

1

|Qk |
α+γ
n

∣∣∣∣∣
∫
(Q∗∗∗k )c

K (x , y)
(
f (y)− fQk

)
dy

∣∣∣∣∣ ≤ C‖f ‖BMOα
L
.

Finally,

1

|Qk |1+
α+γ
n

∫
Qk

|fQk
T 1(x)| dx =

|fQk
|

|Qk |
α
n

1

|Qk |1+
γ
n

∫
Qk

|T 1(x)| dx ≤ C‖f ‖BMOα
L
.

Hence, we conclude that (Ak) holds for T with a constant C that does not
depend on k.
For (Bk), we can deal with it similarly but by using the T 1-condition in the third
part.
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Sketch proof of T1-type criterion for BMOα
L, 0 < α < 1

Let us now prove the converse statement. We need a lemma which provides
examples of functions that are uniformly bounded in BMOα

L .

Lemma (Some examples)

There exists constants C ,Cα > 0 such that for every x0 ∈ Rn and 0 < s ≤ ρ(x0),

(a) the function

gx0,s(x) := χ[0,s](|x − x0|) log

(
ρ(x0)

s

)
+ χ(s,ρ(x0)](|x − x0|) log

(
ρ(x0)

|x − x0|

)
,

x ∈ Rn, belongs to BMOL and ‖gx0,s‖BMOL
≤ C ;

(b) the function
fx0,s(x) = χ[0,s](|x−x0|) (ρ(x0)α − sα)+χ(s,ρ(x0)](|x−x0|) (ρ(x0)α − |x − x0|α),
x ∈ Rn, belongs to BMOα

L , 0 < α ≤ 1, and ‖fx0,s‖BMOα
L
≤ Cα.
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Sketch proof of T1-type criterion for BMOα
L, 0 < α < 1

Suppose that T is bounded from BMOα
L into BMOα+γ

L . Let x0 ∈ Rn and
0 < s ≤ 1

2ρ(x0) and B = B(x0, s). For such x0 and s consider the nonnegative
function f0(x) ≡ fx0,s(x) defined in the lemma above. Using the decomposition

f0 = (f0 − (f0)B)χB∗∗∗ + (f0 − (f0)B)χ(B∗∗∗)c + (f0)B =: f1 + f2 + (f0)B

we can write (f0)BT 1(y) = Tf0(y)− Tf1(y)− Tf2(y). So, we can get the
estimation of

(f0)B
1

|B|1+
α+γ
n

∫
B

|T 1(y)− (T 1)B | dy ≤
2∑

i=0

1

|B|1+
α+γ
n

∫
B

|Tfi (y)− (Tfi )B | dy

as in (Ak). We complete the proof.
The proof of the case α = 0 is almost the same as the proof of the theorem of
0 < α < 1 by using the example function gx0,s(x).
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