Regularity estimates in Hölder spaces for Schrödinger operators via a T1 theorem

Chao Zhang

Wuhan University, China Universidad Autónoma de Madrid, Spain

Joint work with Tao Ma, Pablo Stinga, and José Luis Torrea in Madrid

June 8, 2012, in Wuhan University

It is well-known the crucial role played by T1 theorem in the analysis of L^2 -boundedness of singular integrals.

The L^2 boundedness of convolution type singular integrals. \leftrightarrow Fourier Transforms

The L^2 boundedness of nonconvolution type singular integrals. \leftrightarrow T1 Theorem

イロト イポト イヨト イヨ

Theorem

For a weakly defined operator $T : C_0^{\infty} \to (C_0^{\infty})^*$ whose kernel is a standard kernel (satisfies the classical size and smoothness conditions) and T enjoys the weak boundedness property.

Then the following statements are equivalent:

- T is L² bounded;
- $T1 \in BMO$ and $T^*1 \in BMO$.

 G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120, 1984
 G. David; J. -L. Journé; S. Semmes. Calderón-Zygmund operators, para-accretive functions and interpolation, Rev. Mat. Iberoamericana 4, 1985

T. Hytönen, An operator-valued Tb Theorem, J. Funct.Anal. 234, 2006
 T. Hytönen and L.Weis, A T1 Theorem for integral transformations with

operator valued kernels, J. Reine Angew. Math. 599, 2006

► L. Grafakos, *Classical and modern Fourier analysis*, Pearson Education, Inc., Upper Saddle River, NJ, 2004.

iiThe L^2 -boundedness of singular integral operator is essentially reduced to test the behavior of T1 and $T^*1!!$

The Fourier transform is not needed for the L^2 - boundedness of singular integrals.

イロト イポト イヨト イ

Classical BMO Spaces

For $f \in L_{loc}(\mathbb{R}^n)$, set

$$||f||_{BMO} = \sup_{B} \frac{1}{|B|} \int_{B} |f(x) - f_{B}| dx,$$

where the supremum is taken over all balls B in \mathbb{R}^n .

$$BMO(\mathbb{R}^n) = \{ f \in L_{loc}(\mathbb{R}^n) : \|f\|_{BMO} < \infty \}.$$

$$BMO \iff L^{\infty}$$

Boundedness of classical singular integral

Interpolation theory

Carleson measure

Chao Zhang (Wuhan Uni & UAM)

Regularity estimates via a T1 theorem

Theorem (Not every CZO maps *BMO_C* into *BMO*)

A Calderón-Zygmund operator $T : BMO_C(\mathbb{R}^n) \to BMO(\mathbb{R}^n)$ is bounded if and only if T1 is a constant.

Recently, J. J. Betancor, R. Crescimbeni, J. C. Fariña, P. R. Stinga and J. L. Torrea proved a T1 criterion for the BMO_H -boundedness of T.

▶ J. J. Betancor, R. Crescimbeni, J. C. Fariña, P. R. Stinga and J. L. Torrea, A T1 criterion for Hermite-Calderón-Zygmund operators on the $BMO_H(\mathbb{R}^n)$ space and applications, to appear in Ann. Sc. Norm. Sup. Pisa Cl. Sci.

<ロト </p>

BMO-spaces related to Hermite operator H

Hermite operator: $H = -\Delta + |x|^2$.

$$f \in L_{loc}(\mathbb{R}^n) \text{ is in } BMO_H(\mathbb{R}^n) \text{ if}$$
(i) $\frac{1}{|B|} \int_B |f(x) - f_B| \, dx \leq C$, for every ball B in \mathbb{R}^n , and
(ii) $\frac{1}{|B|} \int_B |f(x)| \, dx \leq C$, for every $B = B(x_0, r_0)$, where $x_0 \in \mathbb{R}^n$ and $r_0 \geq \gamma(x_0)$,
where $f_B = \frac{1}{|B|} \int_B f(x) \, dx$ and $\gamma(x) = \frac{1}{1+|x|}$.
 $\|f\|_{BMO_H(\mathbb{R}^n)} = \inf\{C \geq 0: \text{ (i) and (ii) hold}\}.$

$$BMO_H(\mathbb{R}^n) = \left\{ f \in L_{loc} : \|f\|_{BMO_H(\mathbb{R}^n)} < \infty \right\}.$$

メロト メタト メヨト メヨ

Definition

Let T be a bounded linear operator on $L^2(\mathbb{R}^n)$ such that

$$Tf(x) = \int_{\mathbb{R}^n} K(x,y)f(y) \, dy, \ f \in L^2_c(\mathbb{R}^n)$$
 and a.e. $x \notin \operatorname{supp}(f).$

T is a Hermite-Calderón-Zygmund operator if(i) $|K(x,y)| \leq \frac{C}{|x-y|^n} e^{-c[|x||x-y|+|x-y|^2]}$, for all $x, y \in \mathbb{R}^n$ with $x \neq y$, (ii) $|K(x,y) - K(x,z)| + |K(y,x) - K(z,x)| \leq C \frac{|y-z|}{|x-y|^{n+1}}$, when |x-y| > 2|y-z|.

A T1 Theorem for the Boundedness in BMO_H

Betancor etc. proved a T1 criterion for the BMO_H -boundedness of T.

Theorem (*T*1-type criterion for an Hermite-Calderón-Zygmund operator)

Let T be an Hermite-Calderón-Zygmund operator. Then, the following two statements are equivalent:

- T is a bounded operator on $BMO_H(\mathbb{R}^n)$;
- there exists C > 0 for which the following two conditions are satisfied

(i)
$$\frac{1}{|B(x,\gamma(x))|} \int_{B(x,\gamma(x))} |T1(y)| \, dy \leq C, \text{ for every } x \in \mathbb{R}^n, \text{ and}$$

(ii)
$$\left(1 + \log\left(\frac{\gamma(x)}{s}\right)\right) \frac{1}{|B(x,s)|} \int_{B(x,s)} |T1(y) - (T1)_{B(x,s)}| \, dy \leq C, \text{ for every}$$
$$x \in \mathbb{R}^n \text{ and } s > 0 \text{ such that } 0 < s \leq \gamma(x).$$

<ロト </p>

The maximal operators and Littlewood-Paley *g*-functions associated to the heat and Poisson semigroups for H and the Hermite-Riesz transforms all are Hermite-Calderón-Zygmund operators. Therefore the T1 theorem could be applied.

In fact, as application of the above T1 theorem, Betancor etc. proved

Theorem (Harmonic analysis operators related to Hermite operator *H*)

The maximal operators and the Littlewood-Paley g-functions associated with the heat $\{W_t^H\}_{t>0}$ and Poisson $\{P_t^H\}_{t>0}$ semigroups generated by H and the Hermite-Riesz transforms are bounded from $BMO_H(\mathbb{R}^n)$ into itself.

- To give a T1-type criterion for the boundedness of operator T in BMO-spaces related with a Schrödinger operator;
- To give some applications of the *T*1-type criterion with some operators in Harmonic analysis such as the maximal operators, Littlewood–Paley *g*-functions, Laplace transform type multipliers, Riesz transforms and negative powers related with a Schrödinger operator *L*.

イロト イポト イヨト イ

Schrödinger operator $\mathcal{L} = -\Delta + V$

The time independent Schrödinger operator in \mathbb{R}^n , $n \geq 3$,

$$\mathcal{L}:=-\Delta+V.$$

The nonnegative potential V satisfies a reverse Hölder inequality for some $q \ge n/2$; that is, there exists a constant C = C(q, V) such that

$$\left(\frac{1}{|B|}\int_B V(y)^q \ dy\right)^{1/q} \leq \frac{C}{|B|}\int_B V(y) \ dy$$

for all balls $B \subset \mathbb{R}^n$.

Associated to this potential, Z. Shen defines the critical radii function as

$$ho(x) := \sup\Big\{r > 0: rac{1}{r^{n-2}}\int_{B(x,r)}V(y) \ dy \leq 1\Big\}, \qquad x \in \mathbb{R}^n.$$

We have $0 < \rho(x) < \infty$.

► Z. Shen, *L^p* estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513–546.

BMO^{lpha} —spaces related to ${\cal L}$

$$f \in L_{loc}(\mathbb{R}^n) \text{ is in } BMO_{\mathcal{L}}^{\alpha} \ (0 \le \alpha \le 1), \text{ if}$$
(i) $\frac{1}{|B|} \int_{B} |f(x) - f_B| \ dx \le C |B|^{\frac{\alpha}{n}}, \text{ for every ball } B \text{ in } \mathbb{R}^n, \text{ and}$
(ii) $\frac{1}{|B|} \int_{B} |f(x)| \ dx \le C |B|^{\frac{\alpha}{n}}, \text{ for every } B = B(x_0, r_0), \text{ where } x_0 \in \mathbb{R}^n \text{ and}$
 $r_0 \ge \rho(x_0).$

$$\begin{split} \|f\|_{BMO^{\alpha}_{\mathcal{L}}} &= \inf \left\{ C > 0 : C \text{ in } (i) \text{ and } (ii) \right\}.\\ BMO^{\alpha}_{\mathcal{L}}(\mathbb{R}^n) &= \left\{ f \in L_{loc} : \|f\|_{BMO^{\alpha}_{\mathcal{L}}(\mathbb{R}^n)} < \infty \right\}. \quad BMO^{0}_{\mathcal{L}} = BMO_{\mathcal{L}} \end{split}$$

The restriction $\alpha \leq 1$ in the definition above is necessary because if $\alpha > 1$ then the space only contains constant functions.

▶ J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea and J. Zienkiewicz, *BMO* spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2005), 329–356.

▶ B. Bongioanni, E. Harboure and O. Salinas, *Weighted inequalities for negative powers of Schrödinger operators*, J. Math. Anal. Appl. 348 (2008), 12–27.

Campanato-type description of $BMO^{\alpha}_{\mathcal{L}}$ -spaces

Let

$$C^{\alpha}(\mathbb{R}^{n}) = \{f \in C(\mathbb{R}^{n}) : |f(x) - f(y)| \le C |x - y|^{\alpha}\},\$$
$$[f]_{C^{\alpha}} = \sup_{\substack{x, y \in \mathbb{R}^{n} \\ x \ne y}} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

Recall that $BMO^{\alpha}(\mathbb{R}^n) = C^{\alpha}(\mathbb{R}^n)$ with $||f||_{BMO^{\alpha}(\mathbb{R}^n)} \sim [f]_{C^{\alpha}}$ and $0 < \alpha \leq 1$. S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 175–188. In our case there is s similar identification.

Proposition (Campanato-type description of $BMO^{\alpha}_{\mathcal{L}}$)

Let $0 < \alpha \leq 1$. A function f belongs to $BMO^{\alpha}_{\mathcal{L}}$ if and only if $f \in C^{\alpha}(\mathbb{R}^n)$ and $|f(x)| \leq C\rho(x)^{\alpha}$, for all $x \in \mathbb{R}^n$. Moreover, $\|f\|_{BMO^{\alpha}_{\mathcal{L}}} \sim [f]_{C^{\alpha}(\mathbb{R}^n)} + \|f\rho^{-\alpha}\|_{L^{\infty}(\mathbb{R}^n)}$.

▶ B. Bongioanni, E. Harboure and O. Salinas, Weighted inequalities for negative powers of Schrödinger operators, J. Math. Anal. Appl. 348 (2008), 12–27.

Chao Zhang (Wuhan Uni & UAM)

$\gamma\text{-}\mathsf{Schr{\"o}dinger-Calder{o}n-Zygmund}$ operators

Definition (γ -Schrödinger-Calderón-Zygmund operators)

Let $0 \le \gamma < n$, $1 , <math>\frac{1}{q} = \frac{1}{p} - \frac{\gamma}{n}$. Let T be a bounded linear operator from $L^{p}(\mathbb{R}^{n})$ into $L^{q}(\mathbb{R}^{n})$ such that

$$Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) \, dy, \quad f \in L^p_c(\mathbb{R}^n) \text{ and } a.e. \ x \notin supp(f).$$

T is a γ -Schrödinger-Calderón-Zygmund operator with smoothness exponent $\delta > 0$ if for some constant C

(1)
$$|K(x,y)| \leq \frac{C}{|x-y|^{n-\gamma}} \left(1 + \frac{|x-y|}{\rho(x)}\right)^{-N}$$
, for all $N > 0$ and $x \neq y$, (size)
(2) $|K(x,y) - K(x,z)| + |K(y,x) - K(z,x)| \leq C \frac{|y-z|^{\delta}}{|x-y|^{n-\gamma+\delta}}$, when
 $|x-y| > 2|y-z|$. (smoothness)

Note that every Hermite-Calderón-Zygmund operator is a classical Calderón-Zygmund operator.

Chao Zhang (Wuhan Uni & UAM)

Regularity estimates via a T1 theorem

June 8, 2012 15 / 30

Suppose that $f \in BMO_{\mathcal{L}}^{\alpha}$ and $R \ge \rho(x_0)$, $x_0 \in \mathbb{R}^n$. We define

$$Tf(x) = T\left(f\chi_{B(x_0,R)}
ight)(x) + \int_{B(x_0,R)^c} K(x,y)f(y) dy$$
, a.e. $x \in B(x_0,R)$.

The first term in the right hand side makes sense since $f\chi_{B(x_0,R)} \in L^p_c(\mathbb{R}^n)$.

The second term is absolutely convergent by the size condition of the kernel which is different from the case of classical Laplacian.

So, T1 is well defined.

Theorem (T1-type criterion in $BMO^{lpha}_{\mathcal{L}}$, 0 < lpha < 1)

Let T be a γ -Schrödinger-Calderón-Zygmund operator, $\gamma \ge 0$, with smoothness exponent δ , such that $\alpha + \gamma < \min\{1, \delta\}$. Then, the following statements are equivalent:

- T is bounded from $BMO^{\alpha}_{\mathcal{L}}$ into $BMO^{\alpha+\gamma}_{\mathcal{L}}$;
- there exists a constant C such that

$$\left(rac{
ho(x)}{s}
ight)^lpha rac{1}{|B|^{1+rac{\gamma}{n}}}\int_B |T1(y)-(T1)_B| \,\,dy\leq C,$$

for every ball B = B(x, s), $x \in \mathbb{R}^n$ and $0 < s \le \frac{1}{2}\rho(x)$.

イロト イポト イヨト イヨ

Theorem (*T*1-type criterion for an Hermite-Calderón-Zygmund operator)

Let T be an Hermite-Calderón-Zygmund operator. Then, the following two statements are equivalent:

- T is a bounded operator on $BMO_H(\mathbb{R}^n)$;
- there exists C > 0 for which the following two conditions are satisfied

(i)
$$\frac{1}{|B(x,\gamma(x))|} \int_{B(x,\gamma(x))} |T1(y)| \, dy \leq C, \text{ for every } x \in \mathbb{R}^n, \text{ and}$$

(ii)
$$\left(1 + \log\left(\frac{\gamma(x)}{s}\right)\right) \frac{1}{|B(x,s)|} \int_{B(x,s)} |T1(y) - (T1)_{B(x,s)}| \, dy \leq C, \text{ for every}$$
$$x \in \mathbb{R}^n \text{ and } s > 0 \text{ such that } 0 < s \leq \gamma(x).$$

イロト イポト イヨト イ

Theorem (*T*1-type criterion in $BMO_{\mathcal{L}}$, ($\alpha = 0$))

Let T be a γ -Schrödinger-Calderón-Zygmund operator, $0 \leq \gamma < \min\{1, \delta\}$, with smoothness exponent δ . Then, the following statements are equivalent:

- T is a bounded operator from $BMO_{\mathcal{L}}$ into $BMO_{\mathcal{L}}^{\gamma}$;
- there exists a constant C such that

$$\log\left(\frac{\rho(x)}{s}\right)\frac{1}{|B|^{1+\frac{\gamma}{n}}}\int_{B}|T1(y)-(T1)_{B}| \, dy \leq C,$$

for every ball B = B(x, s), $x \in \mathbb{R}^n$ and $0 < s \le \frac{1}{2}\rho(x)$.

For any
$$0 < \alpha \le 1$$
, if $0 < s \le \frac{1}{2}\rho(x)$ then
 $1 + \log \frac{\rho(x)}{s} \sim \log \frac{\rho(x)}{s}$ and $1 + \frac{2^{\alpha}(\left(\frac{\rho(x)}{s}\right)^{\alpha} - 1)\log 2}{2^{\alpha} - 1} \sim \left(\frac{\rho(x)}{s}\right)^{\alpha}$.
And $\lim_{\alpha \to 0} 1 + \frac{2^{\alpha}(\left(\frac{\rho(x)}{s}\right)^{\alpha} - 1)\log 2}{2^{\alpha} - 1} = 1 + \log \frac{\rho(x)}{s}$.
Therefore, the criterion of the case $(\alpha = 0)$ is indeed the limit case of the criterion
of the case $(0 < \alpha < 1)$.

We should note that our results are more general than the results of Betancor, Crescimbeni, Farina. Stinga and Torrea.

() Assumption: $T: L^p \to L^q (1 instead of <math>T: L^2 \to L^2$;

(a) Result: $T : BMO^{\alpha}_{\mathcal{L}} \to BMO^{\alpha+\gamma}_{\mathcal{L}}$ instead of $T : BMO_{\mathcal{H}} \to BMO_{\mathcal{H}}$.

イロト イポト イヨト イヨ

Application: Pointwise multipliers in $BMO^{\alpha}_{\mathcal{L}}, 0 \leq \alpha < 1$

Proposition (Pointwise Multipliers)

Let ψ be a measurable function on \mathbb{R}^n . We denote by T_{ψ} the multiplier operator defined by $T_{\psi}(f) = f\psi$. Then

(A) T_{ψ} is a bounded operator in $BMO_{\mathcal{L}}$ if and only if $\psi \in L^{\infty}(\mathbb{R}^n)$ and there exists C > 0 such that, for all balls $B = B(x_0, s)$ with $0 < s < \frac{1}{2}\rho(x_0)$,

$$\log\left(\frac{\rho(x_0)}{s}\right)\frac{1}{|B|}\int_B |\psi(y)-\psi_B| \, dy \leq C.$$

(B) T_{ψ} is a bounded operator in $BMO_{\mathcal{L}}^{\alpha}$, $0 < \alpha < 1$, if and only if $\psi \in L^{\infty}(\mathbb{R}^n)$ and there exists C > 0 such that, for all balls $B = B(x_0, s)$ with $0 < s < \frac{1}{2}\rho(x_0)$,

$$\left(rac{
ho(x_0)}{s}
ight)^lpha rac{1}{|B|}\int_B |\psi(y)-\psi_B| \,\,dy\leq C.$$

Applications: Semigoups related with \mathcal{L}

Semigroups related with $\ensuremath{\mathcal{L}}$

• The heat-diffusion semigroup $W_t \equiv e^{-t\mathcal{L}}$: W_t is the solution of heat equation:

$$\partial_t u + \mathcal{L} u = 0.$$

 $\mathcal{W}_t f(x) \equiv e^{-t\mathcal{L}} f(x) = \int_{\mathbb{R}^n} \mathcal{W}_t(x, y) f(y) \, dy, \qquad f \in L^2(\mathbb{R}^n), \ x \in \mathbb{R}^n, \ t > 0.$

• The generalized Poisson semigroups \mathcal{P}_t^{σ} :

$$\mathcal{P}_t^{\sigma}f(x) = \frac{1}{\Gamma(\sigma)}\int_0^{\infty} e^{-r}\mathcal{W}_{\frac{t^2}{4r}}f(x) \frac{dr}{r^{1-\sigma}}.$$

When $\sigma = \frac{1}{2}$, \mathcal{P}_t^{σ} is the classical Poisson operator \mathcal{P}_t which is a solution of the equation: And \mathcal{P}_t^{σ} is a solution of the equation:

$$-\mathcal{L}_{x}u+\frac{1-2\sigma}{t}\partial_{t}u+\partial_{tt}u=0.$$

It is related with the extension problem for the fractional Laplacian.

Applications: Operators related with semigroups

Maximal operators for the heat–diffusion semigroup $W_t \equiv e^{-t\mathcal{L}}$:

$$\mathcal{W}^*f(x) = \sup_{t>0} |\mathcal{W}_t f(x)| = \|\mathcal{W}_t f\|_{L^{\infty}((0,\infty),dt)}.$$

Maximal operators for the generalized Poisson operators \mathcal{P}_t^{σ} :

$$\mathcal{P}_t^{\sigma,*}f(x) = \sup_{t>0} |\mathcal{P}_t^{\sigma}f(x)| = \|\mathcal{P}_t^{\sigma}f(x)\|_{L^{\infty}((0,\infty),dt)}.$$

Littlewood–Paley g-function for the heat–diffusion semigroup:

$$g_{\mathcal{W}}(f)(x) = \left(\int_0^\infty |t\partial_t \mathcal{W}_t f(x)|^2 \frac{dt}{t}\right)^{1/2} = \|t\partial_t \mathcal{W}_t f(x)\|_{L^2\left((0,\infty),\frac{dt}{t}\right)}.$$

Littlewood–Paley *g*-function for the Poisson semigroup:

$$g_{\mathcal{P}}(f)(x) = \left(\int_0^\infty \left|t\partial_t \mathcal{P}_t f(x)\right|^2 \frac{dt}{t}\right)^{1/2} = \left\|t\partial_t \mathcal{P}_t f(x)\right\|_{L^2\left((0,\infty),\frac{dt}{t}\right)}.$$

Laplace transform type multipliers:

$$m(\mathcal{L})f(x) = \int_0^\infty a(t)\mathcal{L}e^{-t\mathcal{L}}f(x) \ dt = \int_0^\infty a(t)\partial_t \mathcal{W}_t f(x) \ dt,$$

where *a* is a bounded function on $[0, \infty)$ and $m(\lambda) = \lambda = \int_{0}^{\infty} a(t)e^{\frac{\pi}{2}t\lambda} dt$.

We can get the regularity estimates of the above operators by proving that they are γ -Schrödinger-Calderón-Zygmund operators and satisfy the conditions of the T1-type criterions.

Theorem (Regularity Estimates)

Let $0 \leq \alpha < \min\{1, 2 - \frac{n}{q}\}$. The maximal operators associated with the heat semigroup $\{\mathcal{W}_t\}_{t>0}$ and with the generalized Poisson operators $\{\mathcal{P}_t^{\sigma}\}_{t>0}$, the Littlewood-Paley g-functions given in terms of the heat and the Poisson semigroups, and the Laplace transform type multipliers $m(\mathcal{L})$, are bounded from $BMO_{\mathcal{L}}^{\alpha}$ into itself.

The T1 Theorem can also be applied to Riesz Transforms related to \mathcal{L} and Negative Powers $\mathcal{L}^{-\gamma}$, $\gamma > 0$.

Proof:

First we shall see that the condition on T1 implies that T is bounded from $BMO_{\mathcal{L}}^{\alpha}$ into $BMO_{\mathcal{L}}^{\alpha+\gamma}$. In order to do this, we will show that there exists C > 0 such that the properties (A_k) and (B_k) stated in the lemma of Boundedness criterion hold for every $k \in \mathbb{N}$ and $f \in BMO_{\mathcal{L}}^{\alpha}$.

Lemma (Boundedness criterion)

Let S be a linear operator defined on $BMO^{\alpha}_{\mathcal{L}}$, $0 \le \alpha \le 1$. Then S is bounded from $BMO^{\alpha}_{\mathcal{L}}$ into $BMO^{\alpha+\gamma}_{\mathcal{L}}$, $\alpha + \gamma \le 1$, $\gamma \ge 0$, if there exists C > 0 such that, for every $f \in BMO^{\alpha}_{\mathcal{L}}$ and $k \in \mathbb{N}$,

$$(A_k) \frac{1}{|Q_k|^{1+\frac{\alpha+\gamma}{n}}} \int_{Q_k} |Sf(x)| dx \le C ||f||_{BMO_{\mathcal{L}}^{\alpha}}, and$$

 $(B_k) ||Sf||_{BMO^{\alpha+\gamma}(Q_k^*)} \leq C ||f||_{BMO^{\alpha}_{\mathcal{L}}}$, where $BMO^{\alpha}(Q_k^*)$ denotes the usual BMO^{α} space on the ball Q_k^* .

We begin with (A_k) . We can divide *Tf* as

$$Tf(x) = T\left((f - f_{Q_k})\chi_{Q_k^{***}}\right)(x) + \int_{(Q_k^{***})^c} K(x,y)(f(y) - f_{Q_k}) \, dy + f_{Q_k}T1(x),$$

a.e. $x \in Q_k$.

As T maps $L^{p}(\mathbb{R}^{n})$ into $L^{q}(\mathbb{R}^{n})$, $\frac{1}{q} = \frac{1}{p} - \frac{\gamma}{n}$, by Hölder's inequality, we have

$$\frac{1}{|Q_k|^{1+\frac{\alpha+\gamma}{n}}}\int_{Q_k}\left|T\left((f-f_{Q_k})\chi_{Q_k^{***}}\right)(x)\right|dx\leq C\|f\|_{BMO^{\alpha}_{\mathcal{L}}}.$$

<ロト <回ト < 回ト :

Sketch proof of T1-type criterion for $BMO^{\alpha}_{\mathcal{L}}$, $0 < \alpha < 1$

On the other hand, given $x \in Q_k$, we have $\rho(x) \sim \rho(x_k)$ and if $|x_k - y| > 2^j \rho(x_k)$, $j \in \mathbb{N}$, then $|x - y| \ge 2^{j-1} \rho(x_k)$. By the size condition of the kernel K, for any $N > \alpha$ we also have

$$\frac{1}{|Q_k|^{\frac{\alpha+\gamma}{n}}}\left|\int_{(Q_k^{***})^c} K(x,y)(f(y)-f_{Q_k}) dy\right| \leq C \|f\|_{BMO_{\mathcal{L}}^{\alpha}}.$$

Finally,

$$\frac{1}{|Q_k|^{1+\frac{\alpha+\gamma}{n}}}\int_{Q_k}|f_{Q_k}\mathcal{T}1(x)| \ \ dx=\frac{|f_{Q_k}|}{|Q_k|^{\frac{\alpha}{n}}}\frac{1}{|Q_k|^{1+\frac{\gamma}{n}}}\int_{Q_k}|\mathcal{T}1(x)| \ \ dx\leq C\|f\|_{BMO^{\alpha}_{\mathcal{L}}}.$$

Hence, we conclude that (A_k) holds for T with a constant C that does not depend on k.

For (B_k) , we can deal with it similarly but by using the *T*1-condition in the third part.

Let us now prove the converse statement. We need a lemma which provides examples of functions that are uniformly bounded in $BMO^{\alpha}_{\mathcal{L}}$.

Lemma (Some examples)

There exists constants $C, C_{\alpha} > 0$ such that for every $x_0 \in \mathbb{R}^n$ and $0 < s \le \rho(x_0)$, (a) the function

$$g_{x_0,s}(x) := \chi_{[0,s]}(|x-x_0|) \log\left(\frac{\rho(x_0)}{s}\right) + \chi_{(s,\rho(x_0)]}(|x-x_0|) \log\left(\frac{\rho(x_0)}{|x-x_0|}\right),$$

$$x \in \mathbb{R}^n, \text{ belongs to BMO}_{\mathcal{L}} \text{ and } \|g_{x_0,s}\|_{BMO_{\mathcal{L}}} \leq C;$$

(b) the function

$$\chi_{0,s}(x) = \chi_{[0,s]}(|x-x_0|) \left(
ho(x_0)^{lpha} - s^{lpha}\right) + \chi_{(s,
ho(x_0)]}(|x-x_0|) \left(
ho(x_0)^{lpha} - |x-x_0|^{lpha}\right), \ \in \mathbb{R}^n$$
, belongs to $BMO_{\mathcal{L}}^{lpha}$, $0 < lpha \leq 1$, and $\|f_{x_0,s}\|_{BMO_{\mathcal{L}}^{lpha}} \leq C_{lpha}.$

<ロト </p>

Suppose that T is bounded from $BMO^{\alpha}_{\mathcal{L}}$ into $BMO^{\alpha+\gamma}_{\mathcal{L}}$. Let $x_0 \in \mathbb{R}^n$ and $0 < s \leq \frac{1}{2}\rho(x_0)$ and $B = B(x_0, s)$. For such x_0 and s consider the nonnegative function $f_0(x) \equiv f_{x_0,s}(x)$ defined in the lemma above. Using the decomposition

$$f_0 = (f_0 - (f_0)_B)\chi_{B^{***}} + (f_0 - (f_0)_B)\chi_{(B^{***})^c} + (f_0)_B =: f_1 + f_2 + (f_0)_B$$

we can write $(f_0)_B T1(y) = Tf_0(y) - Tf_1(y) - Tf_2(y)$. So, we can get the estimation of

$$(f_0)_B \frac{1}{|B|^{1+\frac{\alpha+\gamma}{n}}} \int_B |T1(y) - (T1)_B| \ dy \leq \sum_{i=0}^2 \frac{1}{|B|^{1+\frac{\alpha+\gamma}{n}}} \int_B |Tf_i(y) - (Tf_i)_B| \ dy$$

as in (A_k) . We complete the proof.

The proof of the case $\alpha = 0$ is almost the same as the proof of the theorem of $0 < \alpha < 1$ by using the example function $g_{x_0,s}(x)$.

Thanks for your attention!

イロト イロト イヨト