On *K*-theory of some Noncommutative Orbifold(joint work with Xiang Tang)

Yi-Jun Yao

Fudan University

Operator Spaces, Quantum Probability and Applications Wuhan, June 5th, 2012

イロト イ押ト イヨト イヨト

3 Applications

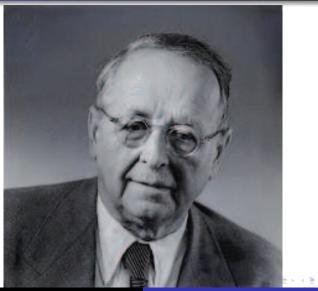
- Noncommutative toroidal orbifolds
- θ deformation

イロト イポト イヨト イヨト

ъ

Strict Deformation Our work

Herman Weyl(1885 - 1955)



Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

Weyl product

$$\begin{array}{ll} f,g\in \mathcal{S}(\mathbb{R}^2),\\ (f*^Wg)(x,y) &=& \int_{\mathbb{R}^2}\int_{\mathbb{R}^2}f(x+u_1,y+u_2)g(x+v_1,y+v_2)\\ & \mathrm{e}^{2\pi\mathrm{i}(u_1v_2-u_2v_1)}\,\mathrm{d}^2u\mathrm{d}^2v. \end{array}$$

イロト イロト イヨト イヨト

æ

Weyl product

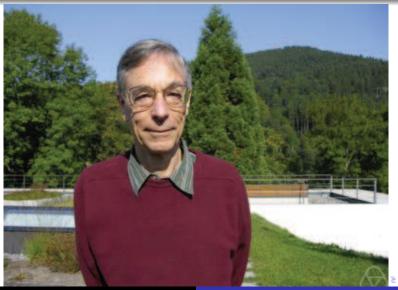
$$\begin{array}{ll} f,g\in \mathcal{S}(\mathbb{R}^2),\\ (f*^Wg)(x,y) &=& \int_{\mathbb{R}^2}\int_{\mathbb{R}^2}f(x+u_1,y+u_2)g(x+v_1,y+v_2)\\ &e^{2\pi\mathrm{i}(u_1v_2-u_2v_1)}\,\mathrm{d}^2u\mathrm{d}^2v. \end{array}$$

Associative noncommutative product.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Strict Deformation Our work

Marc Rieffel(1937 -)



ao On K-theory of some Noncommutative Orbifold(joint work with Xia

Yi-Jun Yao

Rieffel :

• C^* -algebra $A, \alpha : \mathbb{R}^2 \to Aut(A);$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Rieffel :

- C^* -algebra $A, \alpha : \mathbb{R}^2 \to Aut(A);$
- $a, b \in A^{\infty}$,

$$\boldsymbol{a} \ast \boldsymbol{b} = \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \alpha_u(\boldsymbol{a}) \alpha_v(\boldsymbol{b}) \mathrm{e}^{2\pi \mathrm{i}(u_1 v_2 - u_2 v_1)} \mathrm{d}^2 u \mathrm{d}^2 v.$$

ヘロト 人間 とくほ とくほとう

Rieffel :

- C^* -algebra $A, \alpha : \mathbb{R}^2 \to Aut(A);$
- a, $b \in A^{\infty}$,

$$\boldsymbol{a} \ast \boldsymbol{b} = \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \alpha_u(\boldsymbol{a}) \alpha_v(\boldsymbol{b}) \mathrm{e}^{2\pi \mathrm{i}(u_1 v_2 - u_2 v_1)} \mathrm{d}^2 u \mathrm{d}^2 v.$$

• we complete it into a C^* -algebra \rightsquigarrow strict deformation.

イロト イ理ト イヨト イヨト

E nar

Rieffel :

- C^* -algebra $A, \alpha : \mathbb{R}^2 \to Aut(A);$
- a, b ∈ A[∞],

$$\boldsymbol{a} \ast \boldsymbol{b} = \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \alpha_{\boldsymbol{u}}(\boldsymbol{a}) \alpha_{\boldsymbol{v}}(\boldsymbol{b}) \mathrm{e}^{2\pi \mathrm{i}(u_1 v_2 - u_2 v_1)} \mathrm{d}^2 \boldsymbol{u} \mathrm{d}^2 \boldsymbol{v}.$$

- we complete it into a C^* -algebra \rightsquigarrow strict deformation.
- *K*-theory of the deformed algebra is the same as the original one.

イロト イポト イヨト イヨト

E nar

Noncommutative 2-torus

$$A_{\theta} = C(\mathbb{T}^2_{\theta}) = \langle U, V | VU = \exp 2\pi i \theta UV \rangle.$$

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

イロト イポト イヨト イヨト

э

Noncommutative 2-torus

$$oldsymbol{A}_{ heta} = oldsymbol{C}(\mathbb{T}^2_{ heta}) = \langle oldsymbol{U}, oldsymbol{V} | \, oldsymbol{V} oldsymbol{U} = oldsymbol{exp} \, 2\pi \mathrm{i} heta oldsymbol{U} oldsymbol{V}
angle.$$

Example

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

イロト イポト イヨト イヨト

ъ

Noncommutative 2-torus

$$egin{aligned} \mathsf{A}_{ heta} = \mathsf{C}(\mathbb{T}^2_{ heta}) = \langle \mathsf{U}, \mathsf{V} | \; \mathsf{V} \mathsf{U} = \exp 2\pi \mathrm{i} heta \mathsf{U} \mathsf{V}
angle. \end{aligned}$$

Example

•
$$\theta = 0, A_0 = C(\mathbb{T}^2);$$

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

イロト イポト イヨト イヨト

3

Noncommutative 2-torus

$$\mathsf{A}_{ heta} = \mathsf{C}(\mathbb{T}^2_{ heta}) = \langle \mathsf{U}, \mathsf{V} | \ \mathsf{V}\mathsf{U} = \exp 2\pi \mathrm{i} heta \mathsf{U}\mathsf{V}
angle.$$

Example

•
$$\theta = 0, A_0 = C(\mathbb{T}^2);$$

• $\theta \in \mathbb{Q}, A_\theta \stackrel{\text{s.Morita}}{\cong} C(\mathbb{T}^2)$

イロト イポト イヨト イヨト

3

Noncommutative 2-torus

$$A_{ heta} = C(\mathbb{T}^2_{ heta}) = \langle U, V | VU = \exp 2\pi \mathrm{i}\theta UV \rangle.$$

Example

•
$$\theta = 0, A_0 = C(\mathbb{T}^2);$$

•
$$\theta \in \mathbb{Q}, A_{\theta} \stackrel{\text{s.Monta}}{\cong} C(\mathbb{T}^2)$$

• $\theta \notin \mathbb{Q}$, $A_{\theta} = C(S^1) \rtimes_{\theta} \mathbb{Z}$, irrational rotation algebra.

イロト イ押ト イヨト イヨト

= nar

The question

Assume on the C^* -algebra A there is a strongly continuous action α of \mathbb{R}^n , plus a strongly continuous action β of a compact group G, then what would be the K-theory of the ("deformed") algebra ?

・ 得 ト ・ ヨ ト ・ ヨ ト

When the two actions commute...

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

・ロト ・ 四ト ・ モト ・ モト

э

When the two actions commute...

• If the G-action β commutes with the \mathbb{R}^n -action α ,

▲掃▶ ▲ 臣▶ ▲

-

When the two actions commute...

- If the *G*-action β commutes with the \mathbb{R}^{n} -action α ,
- $\alpha \xrightarrow{\text{lift}}$ strongly continuous action $\tilde{\alpha}$ on $A \rtimes_{\beta} G$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- If the **G**-action β commutes with the \mathbb{R}^n -action α ,
- $\alpha \xrightarrow{\text{lift}}$ strongly continuous action $\tilde{\alpha}$ on $A \rtimes_{\beta} G$.
- Applying Rieffel's consctruction for the ℝⁿ-action α̃ on A ⋊_β G → quantized algebra (A ⋊_β G)_J.

・ 同 ト ・ ヨ ト ・ ヨ ト

- If the **G**-action β commutes with the \mathbb{R}^n -action α ,
- $\alpha \xrightarrow{\text{lift}}$ strongly continuous action $\tilde{\alpha}$ on $A \rtimes_{\beta} G$.
- Applying Rieffel's consctruction for the ℝⁿ-action α̃ on A ⋊_β G → quantized algebra (A ⋊_β G)_J.

・ 同 ト ・ ヨ ト ・ ヨ ト

- If the **G**-action β commutes with the \mathbb{R}^n -action α ,
- $\alpha \xrightarrow{\text{lift}}$ strongly continuous action $\tilde{\alpha}$ on $A \rtimes_{\beta} G$.
- Applying Rieffel's consctruction for the ℝⁿ-action α̃ on A ⋊_β G → quantized algebra (A ⋊_β G)_J.
- " $[\alpha, \beta] = 0$ " $\Rightarrow \beta \xrightarrow{\text{lift}}$ strongly continuous action $\tilde{\beta}$ on A_J ,

- If the **G**-action β commutes with the \mathbb{R}^n -action α ,
- $\alpha \xrightarrow{\text{lift}}$ strongly continuous action $\tilde{\alpha}$ on $A \rtimes_{\beta} G$.
- Applying Rieffel's consctruction for the ℝⁿ-action α̃ on *A* ⋊_β *G* → quantized algebra (*A* ⋊_β *G*)_{*J*}.
- " $[\alpha, \beta] = 0$ " $\Rightarrow \beta \xrightarrow{\text{lift}}$ strongly continuous action $\tilde{\beta}$ on A_J , $A_J \rtimes_{\tilde{\beta}} \mathbf{G} \simeq (\mathbf{A} \rtimes_{\beta} \mathbf{G})_J.$

ヘロン 人間 とくほ とくほ とう

E nar

- If the **G**-action β commutes with the \mathbb{R}^n -action α ,
- $\alpha \xrightarrow{\text{lift}}$ strongly continuous action $\tilde{\alpha}$ on $A \rtimes_{\beta} G$.
- Applying Rieffel's consctruction for the ℝⁿ-action α̃ on A ⋊_β G → quantized algebra (A ⋊_β G)_J.
- " $[\alpha, \beta] = 0$ " $\Rightarrow \beta \xrightarrow{\text{lift}}$ strongly continuous action $\tilde{\beta}$ on A_J , $A_J \rtimes_{\tilde{\beta}} G \simeq (A \rtimes_{\beta} G)_J.$
- $K_{\bullet}(A \rtimes_{\beta} G) = K_{\bullet}((A \rtimes_{\beta} G)_J) = K_{\bullet}(A_J \rtimes_{\tilde{\beta}} G).$

The general case I

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

イロト イポト イヨト イヨト

æ

The general case I

G = Z₂ = Z/2Z−action on Rⁿ: reflection with respect to a hyperplane.

・ロット (雪) (日) (日)

э

The general case I

- G = Z₂ = Z/2Z−action on Rⁿ: reflection with respect to a hyperplane.
- $\rightsquigarrow \mathbb{Z}_2$ -action on 2n-torus $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$.

・ロト ・ 理 ト ・ ヨ ト ・

E nar

The general case I

- G = Z₂ = Z/2Z−action on Rⁿ: reflection with respect to a hyperplane.
- $\rightsquigarrow \mathbb{Z}_2$ -action on 2n-torus $\mathbb{T}^{2n} = \mathbb{R}^{2n} / \mathbb{Z}^{2n}$.
- \mathbb{R}^{2n} acts on \mathbb{R}^{2n} by translation \rightsquigarrow acts on \mathbb{T}^{2n} .

э.

The general case I

- G = Z₂ = Z/2Z−action on Rⁿ: reflection with respect to a hyperplane.
- $\rightsquigarrow \mathbb{Z}_2$ -action on 2n-torus $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$.
- \mathbb{R}^{2n} acts on \mathbb{R}^{2n} by translation \rightsquigarrow acts on \mathbb{T}^{2n} .
- $A = C(\mathbb{T}^{2n})$, *J* the standard symplectic matrix on \mathbb{R}^{2n} .

・ロト・ 日本・ エー・ エー・ シック・

The general case I

- G = Z₂ = Z/2Z−action on Rⁿ: reflection with respect to a hyperplane.
- $\rightsquigarrow \mathbb{Z}_2$ -action on 2n-torus $\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$.
- \mathbb{R}^{2n} acts on \mathbb{R}^{2n} by translation \rightsquigarrow acts on \mathbb{T}^{2n} .
- $A = C(\mathbb{T}^{2n})$, *J* the standard symplectic matrix on \mathbb{R}^{2n} .
- α (resp. β): action of \mathbb{R}^{2n} (resp. \mathbb{Z}_2) on A, dual to its action on \mathbb{T}^{2n} .

ヘロン 人間 とくほ とくほ とう

E nar

The general case I

- G = Z₂ = Z/2Z−action on Rⁿ: reflection with respect to a hyperplane.
- $\rightsquigarrow \mathbb{Z}_2$ -action on 2n-torus $\mathbb{T}^{2n} = \mathbb{R}^{2n} / \mathbb{Z}^{2n}$.
- \mathbb{R}^{2n} acts on \mathbb{R}^{2n} by translation \rightsquigarrow acts on \mathbb{T}^{2n} .
- $A = C(\mathbb{T}^{2n})$, *J* the standard symplectic matrix on \mathbb{R}^{2n} .
- α (resp. β): action of \mathbb{R}^{2n} (resp. \mathbb{Z}_2) on A, dual to its action on \mathbb{T}^{2n} .
- ρ : natural inclusion $\mathbb{Z}_2 \hookrightarrow SL_{2n}(\mathbb{R}, J)$, we have

$$\beta_{g}\alpha_{\mathbf{x}} = \alpha_{\rho_{g}(\mathbf{x})}\beta_{g}, \text{ for all } \mathbf{g} \in \mathbf{G}, \mathbf{x} \in \mathbb{R}^{n}.$$

The general case II

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

イロト イポト イヨト イヨト

æ

The general case II

"[α, β] ≠ 0" + nontrivial ρ : G → SL_n(ℝ, J), the ℝⁿ-action α on A cannot be lifted naturally to an action on A ×_β G.

イロト イポト イヨト イヨト

The general case II

- "[α, β] ≠ 0" + nontrivial ρ : G → SL_n(ℝ, J), the ℝⁿ-action α on A cannot be lifted naturally to an action on A ×_β G.
- we still have

$$\beta_g(a \times_J b) = \beta_g(a) \times_J \beta_g(b), \ \beta_g(a^*) = \beta_g(a)^*,$$

イロト イポト イヨト イヨト

э

The general case II

- "[α, β] ≠ 0" + nontrivial ρ : G → SL_n(ℝ, J), the ℝⁿ-action α on A cannot be lifted naturally to an action on A ⋊_β G.
- we still have

$$\beta_g(\mathbf{a} \times_J \mathbf{b}) = \beta_g(\mathbf{a}) \times_J \beta_g(\mathbf{b}), \ \ \beta_g(\mathbf{a}^*) = \beta_g(\mathbf{a})^*,$$

• i.e., the G-action β on A_J is still well-defined.

・ロット (雪) (日) (日)

э

The general case II

- "[α, β] ≠ 0" + nontrivial ρ : G → SL_n(ℝ, J), the ℝⁿ-action α on A cannot be lifted naturally to an action on A ⋊_β G.
- we still have

$$\beta_g(\mathbf{a} \times_J \mathbf{b}) = \beta_g(\mathbf{a}) \times_J \beta_g(\mathbf{b}), \ \beta_g(\mathbf{a}^*) = \beta_g(\mathbf{a})^*,$$

- i.e., the G-action β on A_J is still well-defined.
- Therefore we can consider the crossed product algebra $A_J \rtimes_{\beta} G$.

ヘロト 人間 とくほ とくほ とう

э.

Main Result

Theorem (X.Tang-Y.)

When A is a separable C*-algebra, and if the actions α , β and the group homomorphism ρ satisfy

$$eta_{g}lpha_{\mathbf{x}}=lpha_{
hog}(\mathbf{x})eta_{g}, \hspace{1em} ext{for any } g\in \mathbf{G}, \mathbf{x}\in \mathbb{R}^{n}.$$

Then

$$K_{\bullet}(A_J \rtimes_{\beta} G) \cong K_{\bullet}(A \rtimes_{\beta} G), \quad \bullet = 0, 1.$$

イロト イポト イヨト イヨト

∃ \0<</p>\0

First part of the proof I

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

First part of the proof I

B^A = {f : ℝⁿ → A smooth, f and all its derivatives being bounded }.

・ロト ・ 同ト ・ ヨト ・ ヨト

First part of the proof I

- B^A = {f : ℝⁿ → A smooth, f and all its derivatives being bounded }.
- S^A : space of all *A*-valued Schwartz functions on \mathbb{R}^n .

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

э.

First part of the proof I

- B^A = {f : ℝⁿ → A smooth, f and all its derivatives being bounded }.
- S^A : space of all *A*-valued Schwartz functions on \mathbb{R}^n .
- $\langle f, g \rangle_A := \int f(x)^* g(x) dx \rightsquigarrow A$ -valued inner product on \mathcal{S}^A .

・ロト ・ 理 ト ・ ヨ ト ・

э.

- B^A = {f : ℝⁿ → A smooth, f and all its derivatives being bounded }.
- S^A : space of all *A*-valued Schwartz functions on \mathbb{R}^n .
- $\langle f, g \rangle_A := \int f(x)^* g(x) dx \rightsquigarrow A$ -valued inner product on \mathcal{S}^A .
- For given J, we define on \mathcal{B}^A

$$(F imes_J G)(x) := \int F(x + Ju) G(x + v) e^{2\pi i u \cdot v} du dv, \qquad F, G \in \mathcal{B}^A.$$

ヘロン 人間 とくほ とくほ とう

э

- B^A = {f : ℝⁿ → A smooth, f and all its derivatives being bounded }.
- S^A : space of all A-valued Schwartz functions on \mathbb{R}^n .
- $\langle f, g \rangle_A := \int f(x)^* g(x) dx \rightsquigarrow A$ -valued inner product on S^A .
- For given J, we define on \mathcal{B}^A

$$(F imes_J G)(x) := \int F(x + Ju) G(x + v) e^{2\pi i u \cdot v} du dv, \qquad F, G \in \mathcal{B}^{\mathcal{A}}.$$

• \mathcal{B}^A also acts on \mathcal{S}^A : $(L_F^J f)(x) := \int F(x+Ju)f(x+v)e^{2\pi i u \cdot v} du dv, \qquad F \in \mathcal{B}^A, f \in \mathcal{S}^A.$

- B^A = {f : ℝⁿ → A smooth, f and all its derivatives being bounded }.
- S^A : space of all *A*-valued Schwartz functions on \mathbb{R}^n .
- $\langle f,g\rangle_A := \int f(x)^* g(x) dx \rightsquigarrow A$ -valued inner product on \mathcal{S}^A .
- For given J, we define on \mathcal{B}^A

$$(F imes_J G)(x) := \int F(x + Ju) G(x + v) e^{2\pi i u \cdot v} du dv, \qquad F, G \in \mathcal{B}^{\mathcal{A}}.$$

- \mathcal{B}^A also acts on \mathcal{S}^A : $(L_F^J f)(x) := \int F(x+Ju)f(x+v)e^{2\pi i u \cdot v} du dv, \qquad F \in \mathcal{B}^A, f \in \mathcal{S}^A.$
- A-valued inner product

- B^A = {f : ℝⁿ → A smooth, f and all its derivatives being bounded }.
- S^A : space of all *A*-valued Schwartz functions on \mathbb{R}^n .
- $\langle f,g\rangle_A := \int f(x)^* g(x) dx \rightsquigarrow A$ -valued inner product on \mathcal{S}^A .
- For given J, we define on \mathcal{B}^A

$$(F imes_J G)(x) := \int F(x + Ju) G(x + v) e^{2\pi i u \cdot v} du dv, \qquad F, G \in \mathcal{B}^{\mathcal{A}}.$$

- \mathcal{B}^A also acts on \mathcal{S}^A : $(L_F^J f)(x) := \int F(x+Ju)f(x+v)e^{2\pi i u \cdot v} du dv, \qquad F \in \mathcal{B}^A, f \in \mathcal{S}^A.$
- A-valued inner product \sim operator norm $|| ||_J$ on \mathcal{B}^A

- B^A = {f : ℝⁿ → A smooth, f and all its derivatives being bounded }.
- S^A : space of all *A*-valued Schwartz functions on \mathbb{R}^n .
- $\langle f,g\rangle_A := \int f(x)^* g(x) dx \rightsquigarrow A$ -valued inner product on \mathcal{S}^A .
- For given J, we define on \mathcal{B}^A

$$(F imes_J G)(x) := \int F(x + Ju) G(x + v) e^{2\pi i u \cdot v} du dv, \qquad F, G \in \mathcal{B}^{\mathcal{A}}.$$

- \mathcal{B}^A also acts on \mathcal{S}^A : $(L_F^J f)(x) := \int F(x+Ju)f(x+v)e^{2\pi i u \cdot v} du dv, \qquad F \in \mathcal{B}^A, f \in \mathcal{S}^A.$
- A-valued inner product \rightsquigarrow operator norm $|| ||_J$ on $\mathcal{B}^A \rightsquigarrow (\mathcal{B}^A_J, \times_J, || ||_J)$ a pre- C^* -algebra.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- B^A = {f : ℝⁿ → A smooth, f and all its derivatives being bounded }.
- S^A : space of all *A*-valued Schwartz functions on \mathbb{R}^n .
- $\langle f,g\rangle_A := \int f(x)^* g(x) dx \rightsquigarrow A$ -valued inner product on \mathcal{S}^A .
- For given J, we define on \mathcal{B}^A

$$(F imes_J G)(x) := \int F(x + Ju) G(x + v) e^{2\pi i u \cdot v} du dv, \qquad F, G \in \mathcal{B}^{\mathcal{A}}.$$

- \mathcal{B}^A also acts on \mathcal{S}^A : $(L_F^J f)(x) := \int F(x+Ju)f(x+v)e^{2\pi i u \cdot v} du dv, \qquad F \in \mathcal{B}^A, f \in \mathcal{S}^A.$
- A-valued inner product \rightsquigarrow operator norm $\| \|_J$ on $\mathcal{B}^A \rightsquigarrow$ $(\mathcal{B}_J^A, \times_J, \| \|_J)$ a pre- C^* -algebra. \rightsquigarrow corresponding C^* -algebra $\overline{\mathcal{B}}_J^A$, completion of $\mathcal{S}_J^A = \overline{\mathcal{S}}_J^A$

First part of the proof II

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

First part of the proof II

• \mathbb{R}^n -action α on A

A D > A P > A D > A D >

First part of the proof II

くロト (得) (目) (日)

э

First part of the proof II

• \mathbb{R}^n -action α on $A \rightsquigarrow$ strongly continuous \mathbb{R}^n -action ν on $\overline{\mathcal{B}}_J^A(\mathbb{R}^n$ also acts on $\overline{\mathcal{S}}_J^A$)

 $(\nu_t(F))(\mathbf{x}) := \alpha_t(F(\mathbf{x} - t)).$

ヘロン 人間 とくほ とくほ とう

First part of the proof II

$$(\nu_t(F))(\mathbf{x}) := \alpha_t(F(\mathbf{x}-t)).$$

the fixed point subalgebra of ν can be identified with the subalgebra of B
 ^A generated by elements of the form

$$\tilde{a}(\mathbf{x}) := \alpha_{\mathbf{x}}(\mathbf{a}), \qquad \mathbf{a} \in \mathbf{A}^{\infty}.$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

First part of the proof II

$$(\nu_t(F))(\mathbf{x}) := \alpha_t(F(\mathbf{x}-t)).$$

the fixed point subalgebra of ν can be identified with the subalgebra of B
 ^A generated by elements of the form

$$\tilde{a}(x) := \alpha_x(a), \qquad a \in A^{\infty}.$$

• It is exactly A_J .

伺下 イヨト イヨト

First part of the proof III

• A_J and $\overline{\mathcal{S}}_J^A \rtimes_{\nu} \mathbb{R}^n$ are strongly Morita equivalent.(Rieffel)

・ロト ・ 同ト ・ ヨト ・ ヨト

First part of the proof III

- A_J and $\overline{\mathcal{S}}_J^A \rtimes_{\nu} \mathbb{R}^n$ are strongly Morita equivalent.(Rieffel)
- We can generalize it to the equivariant case(for the *G*-action β).

★聞 と ★ 臣 と ★ 臣 と

First part of the proof III

- A_J and $\overline{\mathcal{S}}_J^A \rtimes_{\nu} \mathbb{R}^n$ are strongly Morita equivalent.(Rieffel)
- We can generalize it to the equivariant case(for the *G*-action β).
- G-action $\overline{\beta}$ on $\overline{\mathcal{S}}_J^A$: $\overline{\beta}_g(F)(x) := \beta_g(F(g^{-1}(x)))$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

First part of the proof III

- A_J and $\overline{S}_J^A \rtimes_{\nu} \mathbb{R}^n$ are strongly Morita equivalent.(Rieffel)
- We can generalize it to the equivariant case(for the *G*-action β).
- G-action $\overline{\beta}$ on $\overline{\mathcal{S}}_J^A$: $\overline{\beta}_g(F)(x) := \beta_g(F(g^{-1}(x))).$
- **G**-action $\overline{\beta}$ is strongly continuous.

・ 同 ト ・ ヨ ト ・ ヨ ト …

First part of the proof III

- A_J and $\overline{S}_J^A \rtimes_{\nu} \mathbb{R}^n$ are strongly Morita equivalent.(Rieffel)
- We can generalize it to the equivariant case(for the *G*-action β).
- G-action $\overline{\beta}$ on $\overline{\mathcal{S}}_J^A$: $\overline{\beta}_g(F)(x) := \beta_g(F(g^{-1}(x))).$
- **G**-action $\overline{\beta}$ is strongly continuous.

Proposition

the crossed product algebras $A_J \rtimes_{\beta} G$ and $(\overline{S}_J^A \rtimes_{\nu} \mathbb{R}^n) \rtimes_{\overline{\beta}} G$ are strongly Morita equivalent.

First part of the proof III

- A_J and $\overline{S}_J^A \rtimes_{\nu} \mathbb{R}^n$ are strongly Morita equivalent.(Rieffel)
- We can generalize it to the equivariant case(for the *G*-action β).
- G-action $\overline{\beta}$ on $\overline{\mathcal{S}}_J^A$: $\overline{\beta}_g(F)(x) := \beta_g(F(g^{-1}(x))).$
- **G**-action $\overline{\beta}$ is strongly continuous.

Proposition

the crossed product algebras $A_J \rtimes_{\beta} G$ and $(\overline{S}_J^A \rtimes_{\nu} \mathbb{R}^n) \rtimes_{\overline{\beta}} G$ are strongly Morita equivalent.

• By Morita equivalence, we have

$$\mathcal{K}_{ullet}(\mathcal{A}_J \rtimes_eta \mathcal{G}) \cong \mathcal{K}_{ullet}((\overline{\mathcal{S}}_J^\mathcal{A} \rtimes_
u \mathbb{R}^n) \rtimes_{\overline{eta}} \mathcal{G}).$$

Second part of the proof

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

Second part of the proof

• \mathbb{C}_n : the complexified Clifford algebra associated to \mathbb{R}^n .

イロト イポト イヨト イヨト

Second part of the proof

- \mathbb{C}_n : the complexified Clifford algebra associated to \mathbb{R}^n .
- Observation: $\mathbb{R}^n \rtimes_{\beta} \mathbf{G}$ is amenable.

イロト イポト イヨト イヨト

Second part of the proof

- \mathbb{C}_n : the complexified Clifford algebra associated to \mathbb{R}^n .
- Observation: $\mathbb{R}^n \rtimes_{\beta} \mathbf{G}$ is amenable.
- equivariant Thom isomorphism by Kasparov :

Theorem

Assume \mathbb{R}^n and G act strongly continuously on the C*-algebra A, denoted by α and β , respectively. Let $\rho : G \to GL(n, \mathbb{R})$. If for any $g \in G, x \in \mathbb{R}^n$, α and β satisfy $\beta_g \alpha_x = \alpha_{\rho_g(x)} \beta_g$, then

$$\begin{array}{rcl} \mathsf{K}_{\bullet}(((\mathsf{A}\otimes\mathbb{C}_n)\rtimes_{\alpha}\mathbb{R}^n)\rtimes_{\beta}\mathsf{G}) &\cong& \mathsf{K}_{\bullet}^{\mathsf{G}}\big((\mathsf{A}\otimes\mathbb{C}_n)\rtimes_{\alpha}\mathbb{R}^n\big)\cong\mathsf{K}_{\bullet}^{\mathsf{G}}(\mathsf{A})\\ &\cong& \mathsf{K}_{\bullet}(\mathsf{A}\rtimes_{\beta}\mathsf{G}), \end{array}$$

where \mathbb{C}_n is the complexified Clifford algebra associated to \mathbb{R}^n .

▲ロト ▲圖ト ▲ ヨト ▲ ヨト -

э

Second part of the proof

- \mathbb{C}_n : the complexified Clifford algebra associated to \mathbb{R}^n .
- Observation: $\mathbb{R}^n \rtimes_{\beta} \mathbf{G}$ is amenable.
- equivariant Thom isomorphism by Kasparov :

Theorem

Assume \mathbb{R}^n and G act strongly continuously on the C*-algebra A, denoted by α and β , respectively. Let $\rho : G \to GL(n, \mathbb{R})$. If for any $g \in G, x \in \mathbb{R}^n$, α and β satisfy $\beta_g \alpha_x = \alpha_{\rho_g(x)} \beta_g$, then

$$\begin{array}{rcl} \mathsf{K}_{\bullet}(((\mathsf{A}\otimes\mathbb{C}_{n})\rtimes_{\alpha}\mathbb{R}^{n})\rtimes_{\beta}\mathsf{G}) &\cong& \mathsf{K}_{\bullet}^{\mathsf{G}}\big((\mathsf{A}\otimes\mathbb{C}_{n})\rtimes_{\alpha}\mathbb{R}^{n}\big)\cong\mathsf{K}_{\bullet}^{\mathsf{G}}(\mathsf{A})\\ &\cong& \mathsf{K}_{\bullet}(\mathsf{A}\rtimes_{\beta}\mathsf{G}), \end{array}$$

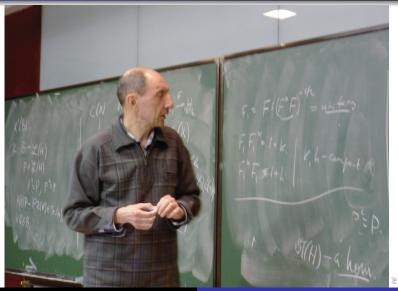
where \mathbb{C}_n is the complexified Clifford algebra associated to \mathbb{R}^n .

• We obtain: $\mathcal{K}_{\bullet}((\overline{\mathcal{S}}_{J}^{A} \otimes \mathbb{C}_{n}) \rtimes_{\beta} G) \cong \mathcal{K}_{\bullet+n}((\overline{\mathcal{S}}_{J}^{A} \rtimes_{\nu} \mathbb{R}^{n}) \rtimes_{\overline{\beta}} G).$

Gennadi Kasparov(1948 -)

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

Gennadi Kasparov(1948 -)

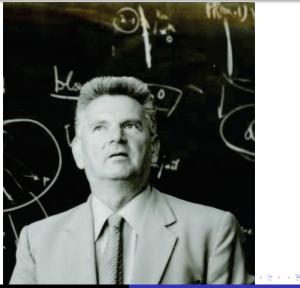


Yi-Jun Yao

On K-theory of some Noncommutative Orbifold(joint work with Xia

Our work

René Thom(1923 -2002)



Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

Our work

René Thom(1923 -2002)

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

Third part of the proof I

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Third part of the proof I

K: algebra of compact operators on separable Hilbert space; *V*₀: kernel of *J* in ℝⁿ.

イロト イポト イヨト イヨト

Third part of the proof I

- *K*: algebra of compact operators on separable Hilbert space; *V*₀: kernel of *J* in ℝⁿ.
- (Rieffel) $\overline{\mathcal{S}}_J^A \cong A \otimes \mathcal{K} \otimes C_\infty(V_0).$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Third part of the proof I

- *K*: algebra of compact operators on separable Hilbert space; *V*₀: kernel of *J* in ℝⁿ.
- (Rieffel) $\overline{\mathcal{S}}_J^A \cong A \otimes \mathcal{K} \otimes C_\infty(V_0).$
- *U*:orthogonal complement of V_0 in \mathbb{R}^n .

▲ @ ▶ ▲ 三 ▶ ▲

Third part of the proof I

- *K*: algebra of compact operators on separable Hilbert space; *V*₀: kernel of *J* in ℝⁿ.
- (Rieffel) $\overline{\mathcal{S}}_J^A \cong A \otimes \mathcal{K} \otimes C_\infty(V_0).$
- *U*:orthogonal complement of V_0 in \mathbb{R}^n .
- Both U and V_0 are G-invariant subspaces.

- ∢ ⊒ →

Third part of the proof I

- *K*: algebra of compact operators on separable Hilbert space; *V*₀: kernel of *J* in ℝⁿ.
- (Rieffel) $\overline{\mathcal{S}}_J^A \cong A \otimes \mathcal{K} \otimes C_\infty(V_0).$
- *U*:orthogonal complement of V_0 in \mathbb{R}^n .
- Both *U* and *V*₀ are *G*-invariant subspaces. + *G* is compact \Rightarrow a *G*-invariant complex structure on *U* compatible with $J|_U$.

▲ □ ▶ ▲ □ ▶ ▲

Third part of the proof I

- *K*: algebra of compact operators on separable Hilbert space; *V*₀: kernel of *J* in ℝⁿ.
- (Rieffel) $\overline{\mathcal{S}}_J^A \cong A \otimes \mathcal{K} \otimes \mathcal{C}_\infty(V_0).$
- *U*:orthogonal complement of V_0 in \mathbb{R}^n .
- Both *U* and *V*₀ are *G*-invariant subspaces. + *G* is compact \Rightarrow a *G*-invariant complex structure on *U* compatible with $J|_U$.
- We can suppose *G* preserves the standard complex structure on *U*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Third part of the proof I

- K: algebra of compact operators on separable Hilbert space; V₀: kernel of J in ℝⁿ.
- (Rieffel) $\overline{\mathcal{S}}_J^A \cong A \otimes \mathcal{K} \otimes \mathcal{C}_\infty(V_0).$
- *U*:orthogonal complement of V_0 in \mathbb{R}^n .
- Both *U* and *V*₀ are *G*-invariant subspaces. + *G* is compact \Rightarrow a *G*-invariant complex structure on *U* compatible with $J|_U$.
- We can suppose *G* preserves the standard complex structure on *U*.
- (Rieffel)For A = C, S
 ^C
 _J = space of compact operators on the subspace H of L²(U) generated by the elements of the form

$$g(\bar{z})e^{-\frac{\|z\|^2}{2}},$$

where g is an anti-holomorphic function.

Third part of the proof II

• $(A \otimes K \otimes C_{\infty}(V_0) \otimes \mathbb{C}_n) \rtimes_{\bar{\beta}} G \stackrel{\text{s.Morita}}{\cong} (A \otimes C_{\infty}(V_0) \otimes \mathbb{C}_n) \rtimes_{\bar{\beta}} G.$ (*G*-equivariant Morita equivalence, Combes)

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Third part of the proof II

- $(A \otimes K \otimes C_{\infty}(V_0) \otimes \mathbb{C}_n) \rtimes_{\bar{\beta}} G \stackrel{\text{s.Morita}}{\cong} (A \otimes C_{\infty}(V_0) \otimes \mathbb{C}_n) \rtimes_{\bar{\beta}} G.$ (*G*-equivariant Morita equivalence, Combes)
- $\mathbb{R}^n = V_0 \oplus U \rightsquigarrow \mathbb{C}_n$ is *G*-equivariantly equivalent to $\mathbb{C}_{V_0} \otimes \mathbb{C}_U$.

ヘロン 人間 とくほ とくほ とう

Third part of the proof II

- $(A \otimes K \otimes C_{\infty}(V_0) \otimes \mathbb{C}_n) \rtimes_{\bar{\beta}} G \stackrel{\text{s.Morita}}{\cong} (A \otimes C_{\infty}(V_0) \otimes \mathbb{C}_n) \rtimes_{\bar{\beta}} G.$ (*G*-equivariant Morita equivalence, Combes)
- $\mathbb{R}^n = V_0 \oplus U \rightsquigarrow \mathbb{C}_n$ is *G*-equivariantly equivalent to $\mathbb{C}_{V_0} \otimes \mathbb{C}_U$.
- the restriction of J gives a symplectic form on U, and the G-action preserves both (the restriction of) J and the metric on U. Hence the G-action on U is spin^c.

ヘロト 人間 とくほ とくほ とう

э.

Third part of the proof II

- $(A \otimes K \otimes C_{\infty}(V_0) \otimes \mathbb{C}_n) \rtimes_{\bar{\beta}} G \stackrel{\text{s.Morita}}{\cong} (A \otimes C_{\infty}(V_0) \otimes \mathbb{C}_n) \rtimes_{\bar{\beta}} G.$ (*G*-equivariant Morita equivalence, Combes)
- $\mathbb{R}^n = V_0 \oplus U \rightsquigarrow \mathbb{C}_n$ is *G*-equivariantly equivalent to $\mathbb{C}_{V_0} \otimes \mathbb{C}_U$.
- the restriction of J gives a symplectic form on U, and the G-action preserves both (the restriction of) J and the metric on U. Hence the G-action on U is spin^c.
- (A ⊗ C_∞(V₀) ⊗ C_n) ⋊_{β̄} G and (A ⊗ C_∞(V₀) ⊗ C_{V₀}) ⋊_{β̄} G have the same KK-theory.

ヘロン 人間 とくほ とくほ とう

Third part of the proof II

- $(A \otimes K \otimes C_{\infty}(V_0) \otimes \mathbb{C}_n) \rtimes_{\bar{\beta}} G \stackrel{\text{s.Morita}}{\cong} (A \otimes C_{\infty}(V_0) \otimes \mathbb{C}_n) \rtimes_{\bar{\beta}} G.$ (*G*-equivariant Morita equivalence, Combes)
- $\mathbb{R}^n = V_0 \oplus U \rightsquigarrow \mathbb{C}_n$ is *G*-equivariantly equivalent to $\mathbb{C}_{V_0} \otimes \mathbb{C}_U$.
- the restriciton of J gives a symplectic form on U, and the G-action preserves both (the restriction of) J and the metric on U. Hence the G-action on U is spin^c.
- (A ⊗ C_∞(V₀) ⊗ C_n) ⋊_{β̄} G and (A ⊗ C_∞(V₀) ⊗ C_{V₀}) ⋊_{β̄} G have the same KK-theory.
- *G*-equivriant Thom isomorphism \Rightarrow

$$\begin{split} \mathsf{K}_{\bullet}((\overline{\mathcal{S}}_{J}^{\mathsf{A}}\otimes\mathbb{C}_{n})\rtimes_{\bar{\beta}}G) &= \mathsf{K}_{\bullet}((\mathsf{A}\otimes\mathcal{K}\otimes\mathsf{C}_{\infty}(\mathsf{V}_{0})\otimes\mathbb{C}_{n})\rtimes_{\bar{\beta}}G) \\ &= \mathsf{K}_{\bullet}((\mathsf{A}\otimes\mathsf{C}_{\infty}(\mathsf{V}_{0})\otimes\mathbb{C}_{\mathsf{V}_{0}})\rtimes_{\bar{\beta}}G) \\ &= \mathsf{K}_{\bullet}(\mathsf{A}\rtimes_{\beta}G). \end{split}$$

ヘロン 人間 とくほ とくほ とう

= nar

Conclusion

$$\mathcal{K}_{\bullet}(\mathcal{A}_{J} \rtimes_{\beta} \mathcal{G}) \quad \stackrel{\text{1st step}}{==} \quad \mathcal{K}_{\bullet}((\overline{\mathcal{S}}_{J}^{\mathcal{A}} \rtimes_{\nu} \mathbb{R}^{n}) \rtimes_{\bar{\beta}} \mathcal{G})$$

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

イロト イポト イヨト イヨト

Ξ.

Conclusion

$$\begin{array}{ll} \mathcal{K}_{\bullet}(\mathcal{A}_{J} \rtimes_{\beta} \mathbf{G}) & \stackrel{\text{lst step}}{===} & \mathcal{K}_{\bullet}((\overline{\mathcal{S}}_{J}^{\mathcal{A}} \rtimes_{\nu} \mathbb{R}^{n}) \rtimes_{\bar{\beta}} \mathbf{G}) \\ & \stackrel{\text{2nd step}}{===} & \mathcal{K}_{\bullet}((\overline{\mathcal{S}}_{J}^{\mathcal{A}} \otimes \mathbb{C}_{n}) \rtimes_{\bar{\beta}} \mathbf{G}) \end{array}$$

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

イロト イポト イヨト イヨト

Ξ.

Conclusion

$$\begin{array}{ll} \mathcal{K}_{\bullet}(\mathcal{A}_{J} \rtimes_{\beta} \mathbf{G}) & \stackrel{\text{1st step}}{=\!=\!=} & \mathcal{K}_{\bullet}((\overline{\mathcal{S}}_{J}^{\mathcal{A}} \rtimes_{\nu} \mathbb{R}^{n}) \rtimes_{\overline{\beta}} \mathbf{G}) \\ & \stackrel{\text{2nd step}}{=\!=\!=} & \mathcal{K}_{\bullet}((\overline{\mathcal{S}}_{J}^{\mathcal{A}} \otimes \mathbb{C}_{n}) \rtimes_{\overline{\beta}} \mathbf{G}) \\ & \stackrel{\text{3rd step}}{=\!=\!=} & \mathcal{K}_{\bullet}(\mathcal{A} \rtimes_{\beta} \mathbf{G}). \end{array}$$

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

イロト イポト イヨト イヨト

Ξ.

Noncommutative toroidal orbifolds θ deformation

• 2-torus $\mathbb{T}^2 \simeq \mathbb{R}^2 / \mathbb{Z}^2 \rightsquigarrow$ an action α of \mathbb{R}^2 by translation.

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへぐ

Noncommutative toroidal orbifolds θ deformation

- 2-torus $\mathbb{T}^2 \simeq \mathbb{R}^2 / \mathbb{Z}^2 \rightsquigarrow$ an action α of \mathbb{R}^2 by translation.
- symplectic form $J = \theta dx_1 \wedge dx_2$ on \mathbb{R}^2 .

・ロト ・ 理 ト ・ ヨ ト ・

5 DQC

 Strict Deformation
 Noncommutative toroidal orbifolds

 Our work
 θ deformation

- 2-torus $\mathbb{T}^2 \simeq \mathbb{R}^2 / \mathbb{Z}^2 \rightsquigarrow$ an action α of \mathbb{R}^2 by translation.
- symplectic form $J = \theta dx_1 \wedge dx_2$ on \mathbb{R}^2 .
- SL(2, Z) acts on R², preserving Z², so it acts on T². Denote by β.

ヘロン 人間 とくほ とくほ とう

э.

Strict Deformation
Our work
ApplicationsNoncommutative toroidal orbifolds
 θ deformation

- 2-torus $\mathbb{T}^2 \simeq \mathbb{R}^2 / \mathbb{Z}^2 \rightsquigarrow$ an action α of \mathbb{R}^2 by translation.
- symplectic form $J = \theta dx_1 \wedge dx_2$ on \mathbb{R}^2 .
- SL(2, Z) acts on R², preserving Z², so it acts on T². Denote by β.
- $SL(2,\mathbb{Z})$ has the (finite) cyclic subgroups generated by

$$\sigma_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$$
$$\sigma_4 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_6 = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

ヘロト 人間 とくほ とくほ とう

Strict Deformation Our work Applications Νοncommutative toroidal orbifolds θ deformation

- 2-torus $\mathbb{T}^2 \simeq \mathbb{R}^2 / \mathbb{Z}^2 \rightsquigarrow$ an action α of \mathbb{R}^2 by translation.
- symplectic form $J = \theta dx_1 \wedge dx_2$ on \mathbb{R}^2 .
- SL(2, Z) acts on R², preserving Z², so it acts on T². Denote by β.
- $SL(2,\mathbb{Z})$ has the (finite) cyclic subgroups generated by

$$\sigma_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$$
$$\sigma_4 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_6 = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

Z_i = the cyclic subgroups of SL(2, Z) generated by σ_i, with corresponding indices i = 2, 3, 4, 6.

Strict Deformation Our work Applications Νοncommutative toroidal orbifolds θ deformation

- 2-torus $\mathbb{T}^2 \simeq \mathbb{R}^2 / \mathbb{Z}^2 \rightsquigarrow$ an action α of \mathbb{R}^2 by translation.
- symplectic form $J = \theta dx_1 \wedge dx_2$ on \mathbb{R}^2 .
- SL(2, Z) acts on R², preserving Z², so it acts on T². Denote by β.
- $SL(2,\mathbb{Z})$ has the (finite) cyclic subgroups generated by

$$\sigma_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$$
$$\sigma_4 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_6 = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

- Z_i = the cyclic subgroups of SL(2, Z) generated by σ_i, with corresponding indices i = 2, 3, 4, 6.
- In this example $SL(2, J) = SL(2, \mathbb{R})$.

・ロト・ 日本・ エー・ エー・ シック・

Strict Deformation Our work Applications Νοncommutative toroidal orbifolds θ deformation

- 2-torus $\mathbb{T}^2 \simeq \mathbb{R}^2 / \mathbb{Z}^2 \rightsquigarrow$ an action α of \mathbb{R}^2 by translation.
- symplectic form $J = \theta dx_1 \wedge dx_2$ on \mathbb{R}^2 .
- SL(2, Z) acts on R², preserving Z², so it acts on T². Denote by β.
- $SL(2,\mathbb{Z})$ has the (finite) cyclic subgroups generated by

$$\sigma_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$$
$$\sigma_4 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_6 = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

- Z_i = the cyclic subgroups of SL(2, Z) generated by σ_i, with corresponding indices i = 2, 3, 4, 6.
- In this example $SL(2, J) = SL(2, \mathbb{R})$.
- We can define the inclusion $\rho : \mathbb{Z}_i \to SL(2, \mathbb{R})$.

ロト (得) (見) (見)

 Strict Deformation
 Noncommutative toroidal orbifolds

 Our work
 θ deformation

It is easy to verify that the \mathbb{Z}_i -action β on \mathbb{T}^2 , the \mathbb{Z}_i -action ρ on \mathbb{R}^2 , and the \mathbb{R}^2 -action α on \mathbb{T}^2 , satisfy the hypothesis of the theorem.

・ 同 ト ・ ヨ ト ・ ヨ ト

It is easy to verify that the \mathbb{Z}_i -action β on \mathbb{T}^2 , the \mathbb{Z}_i -action ρ on \mathbb{R}^2 , and the \mathbb{R}^2 -action α on \mathbb{T}^2 , satisfy the hypothesis of the theorem. And \mathbb{Z}_i acts on the Rieffel deformation A_J (i.e., A_θ) naturally.

・ロット (雪) (日) (日)

It is easy to verify that the \mathbb{Z}_i -action β on \mathbb{T}^2 , the \mathbb{Z}_i -action ρ on \mathbb{R}^2 , and the \mathbb{R}^2 -action α on \mathbb{T}^2 , satisfy the hypothesis of the theorem. And \mathbb{Z}_i acts on the Rieffel deformation A_J (i.e., A_θ) naturally. Hence,

$$K_{\bullet}(A_J \rtimes \mathbb{Z}_i) = K_{\bullet}(A \rtimes \mathbb{Z}_i).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

It is easy to verify that the \mathbb{Z}_i -action β on \mathbb{T}^2 , the \mathbb{Z}_i -action ρ on \mathbb{R}^2 , and the \mathbb{R}^2 -action α on \mathbb{T}^2 , satisfy the hypothesis of the theorem. And \mathbb{Z}_i acts on the Rieffel deformation A_J (i.e., A_θ) naturally. Hence,

$$K_{\bullet}(A_J \rtimes \mathbb{Z}_i) = K_{\bullet}(A \rtimes \mathbb{Z}_i).$$

We obtain then a completely different proof of a result of Echterhoff-Lück-Philipps-Walter.

・ ロ と く 雪 と く 雪 と ・ 目 と

It is easy to verify that the \mathbb{Z}_i -action β on \mathbb{T}^2 , the \mathbb{Z}_i -action ρ on \mathbb{R}^2 , and the \mathbb{R}^2 -action α on \mathbb{T}^2 , satisfy the hypothesis of the theorem. And \mathbb{Z}_i acts on the Rieffel deformation A_J (i.e., A_θ) naturally. Hence,

$$K_{\bullet}(A_J \rtimes \mathbb{Z}_i) = K_{\bullet}(A \rtimes \mathbb{Z}_i).$$

We obtain then a completely different proof of a result of Echterhoff-Lück-Philipps-Walter. For the \mathbb{Z}_2 case, it was first done by Kumjian (1990).

ヘロン 人間 とくほ とくほ とう

Strict Deformation
Our work
ApplicationsNoncommutative toroidal orbif
 θ deformation

4-sphere S^4 in \mathbb{R}^5 centered at (0,0,0,0,1/2) and of diameter 1, i.e.,

$$\left\{(x_1,\cdots,x_5)|x_1^2+x_2^2+x_3^2+x_4^2+\left(x_5-\frac{1}{2}\right)^2=\frac{1}{4}\right\}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへぐ

 Strict Deformation
 Noncommutative toroidal orbifolds

 Our work
 Applications
 θ deformation

4-sphere S^4 in \mathbb{R}^5 centered at (0, 0, 0, 0, 1/2) and of diameter 1, i.e.,

$$\left\{(x_1,\cdots,x_5)|x_1^2+x_2^2+x_3^2+x_4^2+\left(x_5-\frac{1}{2}\right)^2=\frac{1}{4}\right\}.$$

Define a \mathbb{T}^2 -action on S^4 by

$$\begin{pmatrix} (\theta_1, \theta_2), (x_1, \cdots, x_5) \end{pmatrix} \longrightarrow \\ (x_1, \cdots, x_5) \begin{pmatrix} \cos(\theta_1) & \sin(\theta_1) & 0 & 0 & 0 \\ -\sin(\theta_1) & \cos(\theta_1) & 0 & 0 & 0 \\ 0 & 0 & \cos(\theta_2) & \sin(\theta_2) & 0 \\ 0 & 0 & -\sin(\theta_2) & \cos(\theta_2) & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

ヘロン 人間 とくほ とくほ とう

.

Strict Deformation θ deformation Applications

4-sphere S^4 in \mathbb{R}^5 centered at (0, 0, 0, 0, 1/2) and of diameter 1, i.e.,

$$\left\{(x_1,\cdots,x_5)|x_1^2+x_2^2+x_3^2+x_4^2+\left(x_5-\frac{1}{2}\right)^2=\frac{1}{4}\right\}$$

Define a \mathbb{T}^2 -action on S^4 by

$$((\theta_1, \theta_2), (x_1, \cdots, x_5)) \longrightarrow ((\theta_1, \theta_2), (x_1, \cdots, x_5)) \longrightarrow (x_1, \cdots, x_5) \begin{pmatrix} \cos(\theta_1) & \sin(\theta_1) & 0 & 0 & 0 \\ -\sin(\theta_1) & \cos(\theta_1) & 0 & 0 & 0 \\ 0 & 0 & \cos(\theta_2) & \sin(\theta_2) & 0 \\ 0 & 0 & -\sin(\theta_2) & \cos(\theta_2) & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

The same formula defines also an \mathbb{R}^2 -action α on S^4 .

医外球 医外口

 Strict Deformation
 Noncommutative toroidal orbifolds

 Our work
 Applications
 θ deformation

•
$$\mathbb{Z}_2$$
-action β on \mathbb{S}^4 by reflection

$$(\sigma_2, (\mathbf{x}_1, \cdots, \mathbf{x}_5)) \longrightarrow (\mathbf{x}_1, -\mathbf{x}_2, \mathbf{x}_3, -\mathbf{x}_4, \mathbf{x}_5).$$

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia

Strict Deformation
Our work
ApplicationsNoncommutative toroidal orbifolds
 θ deformation

•
$$\mathbb{Z}_2$$
-action β on \mathbb{S}^4 by reflection

$$(\sigma_2, (\mathbf{x}_1, \cdots, \mathbf{x}_5)) \longrightarrow (\mathbf{x}_1, -\mathbf{x}_2, \mathbf{x}_3, -\mathbf{x}_4, \mathbf{x}_5).$$

 $\bullet~\mathbb{Z}_2$ also acts on \mathbb{R}^2 by reflection

$$\rho:\sigma_2\longrightarrow \left(\begin{array}{cc}-1&0\\0&-1\end{array}\right).$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○

5 DQC

Strict Deformation
Our work
ApplicationsNoncommutative toroidal orbifolds
 θ deformation

•
$$\mathbb{Z}_2$$
-action β on \mathbb{S}^4 by reflection

$$(\sigma_2, (\mathbf{x}_1, \cdots, \mathbf{x}_5)) \longrightarrow (\mathbf{x}_1, -\mathbf{x}_2, \mathbf{x}_3, -\mathbf{x}_4, \mathbf{x}_5).$$

 $\bullet~\mathbb{Z}_2$ also acts on \mathbb{R}^2 by reflection

$$\rho:\sigma_2\longrightarrow \left(\begin{array}{cc}-1&0\\0&-1\end{array}\right).$$

• $J = \theta dx_1 \wedge dx_2$ on \mathbb{R}^2 .

ヘロト 人間 とくほ とくほとう

 $\begin{array}{c} \mbox{Strict Deformation} \\ \mbox{Our work} \\ \mbox{Applications} \\ \end{array} \qquad \begin{array}{c} \mbox{Noncommutative toroidal orbifolds} \\ \mbox{θ deformation} \\ \end{array}$

•
$$\mathbb{Z}_2$$
-action β on \mathbb{S}^4 by reflection

$$(\sigma_2, (\mathbf{x}_1, \cdots, \mathbf{x}_5)) \longrightarrow (\mathbf{x}_1, -\mathbf{x}_2, \mathbf{x}_3, -\mathbf{x}_4, \mathbf{x}_5).$$

 $\bullet~\mathbb{Z}_2$ also acts on \mathbb{R}^2 by reflection

$$\rho:\sigma_2\longrightarrow \left(\begin{array}{cc}-1&0\\0&-1\end{array}\right).$$

- $J = \theta dx_1 \wedge dx_2$ on \mathbb{R}^2 .
- α, β, ρ satisfy the conditions of the theorem.

イロト 不得 トイヨト イヨト

= 𝒫𝔅

 $\begin{array}{c} \mbox{Strict Deformation} \\ \mbox{Our work} \\ \mbox{Applications} \\ \end{array} \qquad \begin{array}{c} \mbox{Noncommutative toroidal orbifolds} \\ \mbox{θ deformation} \\ \end{array}$

•
$$\mathbb{Z}_2$$
-action β on \mathbb{S}^4 by reflection

$$(\sigma_2, (\mathbf{x}_1, \cdots, \mathbf{x}_5)) \longrightarrow (\mathbf{x}_1, -\mathbf{x}_2, \mathbf{x}_3, -\mathbf{x}_4, \mathbf{x}_5).$$

 $\bullet~\mathbb{Z}_2$ also acts on \mathbb{R}^2 by reflection

$$\rho:\sigma_2\longrightarrow \left(\begin{array}{cc}-1&0\\0&-1\end{array}\right).$$

- $J = \theta dx_1 \wedge dx_2$ on \mathbb{R}^2 .
- α, β, ρ satisfy the conditions of the theorem.
- C(S⁴) → C(S⁴_θ)(depends on J and α) = θ-deformation introduced by Connes and Landi(2000).

ヘロト 人間 とくほ とくほ とう

Noncommutative toroidal orbifol θ deformation

• \mathbb{Z}_2 -action on $C(S_{\theta}^4)$ is strongly continuous.

ヘロト 人間 とくほとくほとう

€ 990

 $\begin{array}{c} \mbox{Strict Deformation} \\ \mbox{Our work} \\ \mbox{Applications} \\ \end{array} \qquad \begin{array}{c} \mbox{Noncommutative toroidal orbifolds} \\ \mbox{θ deformation} \\ \end{array}$

- \mathbb{Z}_2 -action on $C(S_{\theta}^4)$ is strongly continuous.
- Therefore

$$K_{ullet}(C(S^4) \rtimes \mathbb{Z}_2) = K_{ullet}(C(S^4_{\theta}) \rtimes \mathbb{Z}_2).$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへぐ

 $\begin{array}{c} \text{Strict Deformation} \\ \text{Our work} \\ \text{Applications} \end{array} \quad \begin{array}{c} \text{Noncommutative toroidal orbifolds} \\ \theta \text{ deformation} \end{array}$

- \mathbb{Z}_2 -action on $C(S_{\theta}^4)$ is strongly continuous.
- Therefore

$$\mathcal{K}_{ullet}(\mathcal{C}(\mathcal{S}^4) \rtimes \mathbb{Z}_2) = \mathcal{K}_{ullet}(\mathcal{C}(\mathcal{S}^4_{\theta}) \rtimes \mathbb{Z}_2).$$

The *K*-theory of *C*(*S*⁴) ⋊ ℤ₂ can be computed via ℤ₂-equivariant vector bundles on *S*⁴.

イロト 不得 トイヨト イヨト

- \mathbb{Z}_2 -action on $C(S^4_{\theta})$ is strongly continuous.
- Therefore

$$\mathcal{K}_{ullet}(\mathcal{C}(\mathcal{S}^4) \rtimes \mathbb{Z}_2) = \mathcal{K}_{ullet}(\mathcal{C}(\mathcal{S}^4_{\theta}) \rtimes \mathbb{Z}_2).$$

- The *K*-theory of *C*(*S*⁴) ⋊ ℤ₂ can be computed via ℤ₂-equivariant vector bundles on *S*⁴.
- we can get

$$\mathcal{K}_0(\mathcal{C}(\mathcal{S}^4_{\theta}) \rtimes \mathbb{Z}_2) = \mathbb{Z}^4, \qquad \mathcal{K}_1(\mathcal{C}(\mathcal{S}^4_{\theta}) \rtimes \mathbb{Z}_2) = 0.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

- \mathbb{Z}_2 -action on $C(S^4_{\theta})$ is strongly continuous.
- Therefore

$$\mathcal{K}_{ullet}(\mathcal{C}(\mathcal{S}^4) \rtimes \mathbb{Z}_2) = \mathcal{K}_{ullet}(\mathcal{C}(\mathcal{S}^4_{\theta}) \rtimes \mathbb{Z}_2).$$

- The *K*-theory of *C*(*S*⁴) ⋊ ℤ₂ can be computed via ℤ₂-equivariant vector bundles on *S*⁴.
- we can get

$$K_0(C(S^4_{ heta}) \rtimes \mathbb{Z}_2) = \mathbb{Z}^4, \qquad K_1(C(S^4_{ heta}) \rtimes \mathbb{Z}_2) = 0.$$

Remark: in the above process, Z₂ is not essential, the same method works for K_•(C[∞](S⁴_θ) × Z_i), i = 3, 4, 6.

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

Noncommutative toroidal orbifolds θ deformation

Thanks! 谢谢!

Yi-Jun Yao On K-theory of some Noncommutative Orbifold(joint work with Xia