Close II₁ Factors and the Isomorphism Problem

Alan Wiggins

University of Michigan-Dearborn

June 5, 2012

Joint With Jan Cameron, Erik Christensen, Allan Sinclair, Roger Smith, & Stuart White

Notation

- H separable infinite dimensional Hilbert space
- B(H) bounded linear operators on H
- ullet A,B not necessarily unital C^* algebras represented concretely on H
- A₁ the unit ball of A
- $A' = \{ T \in B(H) \mid ST = TS \ \forall \ S \in A \}$
- $\mathcal{U}(A)$ the unitary group of A

The Hausdorff Metric

Definition

$$d(A,B) = \max(\sup_{x \in A_1} \inf_{y \in B_1} \|x - y\|, \sup_{x \in B_1} \inf_{y \in A_1} \|x - y\|)$$

Questions (Kadison/Kastler): Is there a universal constant c > 0 such that

- **1** $d(A, B) < c \Rightarrow A$ and B are isomorphic?
- **2** $d(A, B) < c \Rightarrow A$ and B are spatially isomorphic?
- **3** $d(A,B) < c \Rightarrow A$ and B are spatially isomorphic by a unitary u with ||u-I|| < f(c) where $f: \mathbb{R}^+ \to \mathbb{R}^+$ is also universal and satisfies $\lim_{c \to 0} f(c) = 0$?

Results For C*-Algebras

- (Barry Johnson, 1982) If $A = \{f : [0,1] \to K(H) \mid f \ continuous\}, \exists$ arbitrarily close unitary conjugates of A such that one cannot choose the unitary close to I.
- (Choi and Christensen, 1983) \exists arbitrarily close nonisomorphic nonseparable C^* algebras.
- (Christensen, Sinclair, Smith, White, Winter, 2010) Spatial isomorphism always holds whenever A is separable and nuclear and c < 1/420,000

Results For Von Neumann Algebras

- (Christensen, 1973, 1977) If A is an injective von Neumann algebra, then 3) holds for c < 1/169.
- (Christensen, 1977) If M and N II₁ factors and $(M \cup N)''$ is a finite von Neumann algebra, then 3) holds for c < 1/8.
- All questions still open for the class of II₁ factors

II₁ Factors: Definition and Examples

A II_1 factor is an infinite dimensional von Neumann algebra M with $\mathcal{Z}(M):=M'\cap M=\mathbb{C}I$ admitting a (unique) normal, faithful, tracial state.

Examples

- G a discrete group with the infinite conjugacy class condition (\mathbb{F}_n for n > 1); M is the double commutant of the left regular representation of G.
- (X,\mathcal{A},μ) a probability measure space, G a countable discrete group with a free, ergodic, measure-preserving action α of G on (X,\mathcal{A},μ) where $\alpha_{gh}=\alpha_g\alpha_h$ ($G=\mathbb{Z}$ via irrational rotation, $(X,\mathcal{A},\lambda)=(\mathbb{T},\mathcal{B},\lambda)$ where \mathcal{B} is the σ -algebra of Borel sets and λ is Lebesgue measure). Obtain a Π_1 factor $M=L^\infty(X,\mathcal{A},\mu)\rtimes_\alpha G$, the crossed product of (X,\mathcal{A},μ) by G.

More on Crossed Products

The construction represents $M = L^{\infty}(X, \Omega, \mu) \rtimes_{\alpha} G$ on H where $H = L^{2}(X, \mathcal{A}, \mu) \otimes \ell_{2}(G)) = \{f : G \to L^{2}(X, \mathcal{A}, \mu) \mid \sum_{g \in G} \|f(g)\|^{2} < \infty \}$

M is generated as a von Neumann algebra by copies $\{u_g\}_{g\in G}$ of G and $\{\pi_{\alpha}(x)\}_{x\in L^{\infty}(X,\Omega,\mu)}$ of $L^{\infty}(X,\Omega,\mu)$ satisfying, for all $x\in L^{\infty}(X,\Omega,\mu)$, $f\in H$, and $g,h\in G$

$$(\pi_{\alpha}(x)f)(g) = \alpha_{g^{-1}}(x)f(g)$$
$$(u_h f)(g) = f(h^{-1}g)$$

Then $u_h \pi_{\alpha}(x) u_{h^{-1}} = \pi_{\alpha}(\alpha_h(x))$

We may then consider M as sums of the form $\sum_{g \in G} \pi_{\alpha}(x_g) u_g$ for $x_g \in L^{\infty}(X, \mathcal{A}, \mu)$ with multiplication defined using the above identity.

Cocycles and Twisted Crossed Products

Let $G \curvearrowright_{\alpha} (X, \Omega, \mu)$. A 2-cocycle in $Z^2(G, \mathcal{U}(L^{\infty}(X, \Omega, \mu)))$ is a map $\omega : G \times G \to \mathcal{U}(L^{\infty}(X, \Omega, \mu))$ satisfying, for all $g, h, k \in G$,

$$\alpha_{g}(\omega(h,k))\omega(gh,k)^{*}\omega(g,hk)\omega(g,h)^{*}=I.$$

Then we may define a product $u_g u_h := \omega(g, h) u_{gh}$ and obtain the twisted crossed product $M = L^{\infty}(X, A, \mu) \rtimes_{\alpha, \omega} G$.

The isomorphism type of the twisted crossed product is completely determined by the cohomology class of ω in $H^2(G,\mathcal{U}(A))$. In particular, any cocycle cohomologous to $\omega(g,h)=I$ gives $M=L^\infty(X,\mathcal{A},\mu)\rtimes_\alpha G$

Main Theorem

Theorem

(CCSSWW) Let M be *-isomorphic to $L^{\infty}(X,\mathcal{A},\mu)\rtimes_{\alpha}\mathbb{F}_n$ for some $n\geq 2$ where α is free, ergodic, and measure-preserving. Then if N is any other von Neumann algebra with $d(M,N)<5.8\times 10^{-16}$, N is *-isomorphic to M.

Outline of the Proof

Let N be another von Neumann algebra with $d(N,M) < 5.8 \times 10^{-16}$. Let Q denote the copy of $L^{\infty}(X,\Omega,\mu)$ in M.

- Conjugate N by a unitary u close to the identity to acheive $Q \subset uNu^* =: N_0$. Replace N by N_0 .
- 2 Transfer $\{u_g\}_{g\in G}$ to unitaries $\{v_g\}_{g\in G}$ in N_0 such that $u_g x u_g^* = v_g x v_g^*$ for all $g \in G$ and $x \in Q$.
- **3** Find representations of M and N_0 on a new Hilbert space on which N_0 and M are still close and both are in standard form; obtain N_0 is isomorphic to $L^{\infty}(X, \mathcal{A}, \mu) \rtimes_{\alpha, \omega} G$.
- **4** Conclude N_0 is isomorphic to $Q \rtimes_{\alpha} \mathbb{F}_n$ by using cohomological properties of \mathbb{F}_n to trivialize the cocycle.

Preliminaries

For a von Neumann subalgebra B of M, let $\mathcal{N}_M(B)$ denote the group of unitaries u in M with $uBu^* = B$.

If
$$M = Q \rtimes_{\alpha,\omega} G$$
, then $\mathcal{N}_M(Q)'' = M$.

For any unital von Neumann subalgebra B of a II_1 factor N, \exists a unique normal, faithful trace-preserving conditional expectation $\mathbb{E}_B : N \to B$.

Near Inclusions

Let $\delta \geq 0$. We write $A \subseteq_{\delta} B$ if $\forall x \in A$, $\exists y \in B$ with $||x - y|| \leq \delta ||x||$. We write $A \subset_{\delta} B$ if $\exists 0 \leq \gamma < \delta$ with $A \subseteq_{\gamma} B$.

Note $d(A, B) < \delta \Rightarrow A \subset_{\delta} B \subset_{\delta} A$, but $A \subset_{\delta} B \subset_{\delta} A$ only implies $d(A, B) < 2\delta$.

So at the cost of slightly worse estimates, 2-sided δ -containments can be used (better properties under taking commutants and amplifications).

Folklore

Let P be a finite von Neumann algebra. If G is a countable discrete group and $G \curvearrowright_{\alpha} P$ is a trace-preserving action of G by automorphisms, then if $\omega \in Z^2(G,\mathcal{U}(\mathcal{Z}(P)))$,

- Any finite von Neumann algebra M generated by a unital copy of P and unitaries $\{w_g\}_{g\in G}$ such that $P'\cap M\subseteq P$ and there exists a trace-preserving conditional expectation $\mathbb{E}:M\to P$ satisfying $w_gxw_g^*=\alpha_g(x),\ w_gw_h=\omega(g,h)u_{gh},\ \text{and}\ \mathbb{E}(w_g^*w_h)=\delta_{g,h}I$ for all $x\in M$ and $g,h\in G$, then M is *-isomorphic to $P\rtimes_{\alpha,\omega}G$
- If $[\omega] = [\omega']$ in $H^2(G, \mathcal{U}(\mathcal{Z}(P)))$, then $P \rtimes_{\alpha,\omega} G$ is *-isomorphic to $P \rtimes_{\alpha,\omega'} G$.

Lemma 1

Assume $d(M, N) < 5.8 \times 10^{-16} < \frac{1}{8}$. Then we have that N is a II_1 factor by results of Kadison and Ringrose (1972).

Lemma

(Christensen, 1980) Suppose d(M,N) < 1/100. If $A \subset M$ is amenable, then \exists a unitary $u \in (A \cup N)''$ with $\|I - u\| \le 150d(M,N)$ such that $A \subseteq uNu^* := N_0$. Further, if M and N are amenable and $M, N \subseteq P$ where P is finite, $N \subset_{\delta} M$, $M \subset_{\delta} N$ for $\delta < \frac{1}{8}$, then $\exists \ u \in \mathcal{U}((M \cup N)'')$ such that $\|I - u\| \le 6.5\delta$ and $uMu^* = N$.

By replacing N with N_0 , we may assume $Q \subseteq N \cap M$.

Lemma 2

Lemma

Suppose $M \subset_{\gamma} N \subset_{\gamma} M$ for $0 < \gamma < \frac{1}{16\sqrt{2}}$. Then if $A \subset N \cap M$ is amenable,

- $\forall u \in \mathcal{N}_M(A), \exists v \in \mathcal{N}_N(A) \text{ with } ||u v|| < 14\sqrt{2}\gamma.$
- If $u \in \mathcal{N}_M(A)$, $v \in \mathcal{N}_N(A)$ satisfying $\|u v\| < \frac{1}{2}$, $\exists w \in \mathcal{U}(A)$ and $w' \in \mathcal{U}(A')$ with $\|w I\| < 2^{3/2} \|u v\|$, $\|w' I\| < (2^{3/2} + 1) \|u v\|$ and v = uw'w.

Proof of Lemma 2, Part 1

Proof: Let $u \in \mathcal{N}_M(A)$. It is known (Koshkam, 1984) that we can find $w \in \mathcal{U}(N)$, $\|u - w\| < \sqrt{2}\gamma$. Let $x \in A_1$. Then

$$\|uxu^* - wxw^*\| \le \|uxu^* - wxu^*\| + \|wxu^* - wxw^*\| \le 2\|u - w\| \le 2\sqrt{2}\gamma$$

This implies $d(A, wAw^*) < 2\sqrt{2}\gamma < \frac{1}{8}$. Therefore by Lemma 1, \exists unitary $s \in (A \cup wAw^*)'' \subseteq N$ satisfying $\|I - s\| < 13\sqrt{2}\gamma$ and $swAw^*s^* = A$. Let $v = sw \in \mathcal{N}_N(A)$. Then

$$\|v - u\| = \|v - sw\| \le \|v - w\| + \|w - sw\| < \sqrt{2}\gamma + 13\sqrt{2}\gamma = 14\sqrt{2}\gamma.$$

Г

Standard Form: Lemma 3

Lemma

Suppose $N \subset_{\gamma} M \subset_{\gamma} N$ for $\gamma < 4 \times 10^{-14}$. Then \exists a separable Hilbert space K and representations $\pi : M \to B(K)$ and $\rho : N \to B(K)$ satisfying

- $\pi(M)$ and $\pi(N)$ are in standard form on K and \exists a common cyclic, separating tracial vector Ω .
- $\pi(M) \subset_{\beta} \rho(N) \subset_{\beta} \pi(M)$ with $\beta < 76371\gamma^{1/2} < 1/62$
- $\bullet \ \pi|_Q = \rho|_Q$
- $\rho(Q)' \cap \rho(N) = \rho(Q)$ and $\rho(Q)$ is regular in $\rho(N)$ (implies Q is regular in N)
- $\langle \pi(M), e_{\pi(Q)} \rangle = \langle \rho(N), e_{\rho(Q)} \rangle$.
- If $\{s_g\}_{g \in G}$ is a family of unitaries in N with $\|u_g s_g\| < 1/2 \beta$, then $\{s_g\}_{g \in G}$ satisfies $\mathbb{E}_Q\left(s_g^*s_h\right) = \delta_{g,h}I$ and $\bigoplus_{g \in G}(s_gQ\Omega)$ is dense in K.

Conclusion

Note that for the unitaries from Lemma 2,

$$||u_g - s_g|| < 7869d(M, N) < 7869(5.3 \times 10^{-16}) < 1/2 - 1/62,$$

and so the hypotheses of Lemma 3 are satisfied.

By the folklore result, \exists 2-cocycle $\omega \in \mathcal{Z}(G,\mathcal{U}(Q))$ with N isomorphic to $Q \rtimes_{\alpha,\omega} \mathbb{F}_n$. However, since H^2 is trivial for all free groups, we have that ω is cohomologous to the trivial cocycle, so N is *-isomorphic to $Q \rtimes_{\alpha} \mathbb{F}_n$

Other results

- Structural properties preserved for small enough c: unique Cartan masa, strong solidity, property Γ, McDuff.
- If in addition we assume action α is not strongly ergodic, then 2) holds for $c < 5.8 \times 10^{-16}$ (Property Γ). Don't know about 3)...
- Other crossed product constructions yield 3) after tensoring with hyperfinite II₁ factor (McDuff).
- The main ingredient is the notion of c.b. distance:

$$d_{cb} = \sup_{n \geq 1} (A \otimes M_n(\mathbb{C}), B \otimes M_n(\mathbb{C})).$$