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µ-Harmonic Functions and Poisson Boundary
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Locally Compact Groups

Let G be a locally compact group. Then there is a natural multiplication

on the space M(G) = C0(G)∗ of bounded regular measures on G. The

multiplication is defined by

〈f, µ ? ν〉 =
∫
G

∫
G
h(st)dµ(s)dν(t)

for all h ∈ C0(G).

L1(G) with the convolution multiplication

f ? g(t) =
∫
G
f(s)g(s−1t)ds

is a norm closed two-sided ideal in M(G).

Therefore for each µ ∈M(G), we can define a right multiplication map

mµ : f ∈ L1(G)→ f ? µ ∈ L1(G),

on L1(G).
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µ-Harmonic Functions

Let G be a locally compact group and µ ∈M(G) be a regular probability
measure on G. We can obtain a unital completely positive (ucp) map
Φµ on L∞(G) given by

Φµ(h)(s) =
∫
G
h(st)dµ(t)

for all h ∈ L∞(G).

Since for any f ∈ L1(G), we have

〈Φµ(h), f〉 =
∫

Φµ(h)(s)f(s)ds =
∫
G
h(st)f(s)dsdµ(t) = 〈h, f ? µ〉,

we see that Φµ = (mµ)∗ is the adjoint map of the right multiplication
map mµ and thus is weak* continuous on L∞(G). In this case, we also
say that Φµ is a Markov operator on L∞(G).

A function h ∈ L∞(G) (or bounded Borel function) is called µ-harmonic
(or Φµ-harmonic) if

Φµ(h) = h.
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Poisson Boundary

We let

Hµ = {h ∈ L∞(G) : Φµ(h) = h}

be the space of all µ-harmonic functions on G. This is a weak* closed
operator system in L∞(G).

It is important to note that there is a ucp map

E : L∞(G)→Hµ ⊆ L∞(G)

from L∞(G) onto Hµ given by the weak* Banach limit

E(h) = lim
B

Φn
µ(h)

for all h ∈ L∞(G).

Since we are taking the Banach limit, we get Φµ ◦ E = E and thus

E2 = E.

Therefore, we say that E is a conditional expectation from L∞(G) onto
Hµ.
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Then we can obtain a von Neumann algebra multiplication on Hµ given

by the Choi-Effros product

h ◦ k = E(hk),

and we obtain a commutative von Neumann algebra (Hµ, ◦), the Poisson

boundary of (G,µ).

Remark: In general, (Hµ, ◦) is not necessary a von Neumann subalgebra

of L∞(G).

It is known that the product on Hµ coincides with the product on L∞(G)

if and only if every bounded continuous function h ∈ Hµ must be con-

stant on the coset of the closed subgroup Gµ generated by the support

supp µ of µ.
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Proposition: Let µ be a non-degenerate probability measure, i.e. the

subgroup generated by the support of µ is dense in G. TFAE:

1. (Hµ, ◦) is a subalgebra of L∞(G);

2. (Hµ, ◦) = C1.

Proposition: Let G be a locally compact group. Then TFAE:

1. There is a probability measure µ on G such that (Hµ, ◦) = C1.

2. G is amenable and σ-compact.

Therefore, if G is a countable discrete non-amenable group, then for

any non-degenerate probability measure µ on G, (Hµ, ◦) can not be von

Neumann sub algebra of L∞(G).
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More Properties about the Boundary

There is a natural left action α : Gy L∞(G) given by

αs(h)(t) = h(s−1t).

The Markov operator Φµ is invariant with respect to this action. Indeed,

we have

Φµ ◦ αs = αs ◦Φµ

for all s ∈ G sicne

αs ◦Φµ(h)(t) = Φµ(h)(s−1t) =
∫
G
h(s−1tg)dµ(g)

=
∫
G
αs(h)(tg)dµ(g) = Φµ ◦ αs(h)(t)

for all h ∈ L∞(G). Therefore, α satisfies

αs ◦ E = E ◦ αs

and thus α induces an action αµ : Gy Hµ on the von Neumann algebra

(Hµ, ◦).
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There exists a (unique) measure space (Ω, ν) such that

(Hµ, ◦) = L∞(Ω, ν)

and the induced action αµ on Hµ corresponds to a measure preserving

action on (Ω, ν). This space (Ω, ν), where Ω can be chosen as a Borel

space, gives the Poisson boundary of (G,µ).

8



Can we study this in duality setting ?
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Yes ! Chu and Lau have considered the dual version of harmonic func-

tions. In this case, they replaced

L∞(G) by V N(G),

and replaced

probability measures µ on G by states ϕ in B(G) = C∗(G)∗,

which are exactly positive definite functions on G with ϕ(e) = 1.

Given any state ϕ ∈ B(G), we can define a multiplication map

mϕ : f ∈ A(G)→ ϕf ∈ A(G)

on A(G). Its adjoint map Φ̂ϕ = m∗ϕ is a weak* continuous ucp map (i.e.

a Markov operator) on V N(G) such that

Φ̂ϕ(λs) = ϕ(s)λs.
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We can define ϕ-harmonic functionals (on A(G)) to be elements x ∈
V N(G) such that Φ̂ϕ(x) = x. We define the ϕ-Poisson boundary to be

the space

Ĥϕ = {x ∈ V N(G) : Φ̂ϕ(x) = x} ⊆ V N(G).

The theory is strikingly different from the L∞(G) case.

Theorem [Chu-Lau] For any state ϕ ∈ B(G),

Gϕ = {g ∈ G : ϕ(g) = 1}

is a closed subgroup of G and we have

Ĥϕ = λ(Gϕ)′′

which is always a von Neumann subalgebra of V N(G) !

11



Can we generalize this to LCQGs ?
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Poisson boundaries for qunatum measures on some discrete quantum

groups have been stuided by

• Izumi 2002: G = ̂SUq(2), Hµ = L∞(SUq(2)/T).

• Neshveyev-Tuset 2006: G = ̂SUq(N), Hµ = L∞(SUq(N)/TN−1).

• Vaes-Vander Vennet 2008: G = Âo(F ).

• Vaes-Vander Vennet 2010: G = Âu(F )
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Our goal is to study Poisson boundaries and their properties for

general LCQGs.
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Locally Compact Quantum Groups
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The theory of locally compact quantum groups was originated from the

generalization of Pontryagin duality. It is well-known that if G is an

abelian group, we can define the dual group

Ĝ = {χ : G→ T : continuous homomorphism}

and we have the Pontryagin duality

ˆ̂G = G.

The question is how to generalize this concept to non-abelian groups !
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Let G be a locally compact group. Then we have a natural (dual)

correspondence between

Locally Compact Space G ⇔ Commutative C*-algebra C0(G)

or

Measure Space G ⇔ Commutative von Neumann Algebra L∞(G)
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Hopf von Neumann Algebra Structure on L∞(G)

The group multiplication

(s, t) ∈ G×G→ st ∈ G

on G induces a co-multiplication

Γa : f ∈ L∞(G)→ Γa(f) ∈ L∞(G)⊗̄L∞(G)

where Γa(f)(s, t) = f(st).

The associativity of group multiplication implies the co-associativity of

Γa, i.e. we have

(Γa ⊗ ι)Γa = (ι⊗ Γa)Γa.

Indeed, we have

(Γa ⊗ ι)Γa(f)(s, t, u) = f((st)u) = f(s(tu)) = (ι⊗ Γa)Γa(f)(s, t, u).

Therefore, (L∞(G),Γa) is a commutative Hopf von Neumann algebra.
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The inverse of G determines the co-inverse κ on L∞(G), which is given

by

κ(f)(t) = f(t−1)

Finally, the left Haar measure on G determines a left Haar weight

ϕa(h) =
∫
G
h(s)ds

on L∞(G)+.
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Kac Algebras

G. Kac made a very important contribution to this problem during

1960’s-70’s. He first introduced Kac algebras K = (M,Γ, κ, ϕ), for uni-

modular case, in the 60’s.

The theory was completed for general (non-unimodular) case in the

70’s by two groups: Kac-Vainerman in Ukraine and Enock-Schwartz in

France (see Enock-Schwartz’s book 1992).

Given a Kac algebra K, we can obtain the dual Kac algebra K̂ and obtain

a perfect Pontryagin duality

ˆ̂K = K.
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Locally Compact Quantum Groups (LCQG)

The notion of quantum groups was introduced by Drinfel’d in his 1986
ICM talk. Here, we consider the analysis aspect of quantum groups, i,e
we consider the quantization of locally compact groups.

In 1987, Woronowicz discovered SUq(2,C), a natural quantum deforma-
tion of SU(2,C). He showed that SUq(2,C) does not correspond to any
Kac algebra due to the missing of bounded co-involution.

Since then, several different definitions of LCQG have been given by

• Baaj and Skandalis 1993: Regular Multiplicative Unitaries

• Woronowicz 1996: Manageable Multiplicative Unitaries

• Kustermans and Vaes 2000: Quantum Groups, C∗-algebra setting

• Kustermans and Vaes: 2003: Quantum Groups, von Neumann algebra

setting.
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Kustermans and Vaes’ Definition of LCQG

A LCQG is G = (M,Γ, ϕ, ψ) consisting of

(1) a von Neumann algebra M , which will be denoted by L∞(G)

(2) a co-multiplication Γ : M → M⊗̄M , i.e. a unital normal *-
homomorphism satisfying the co-associativity condition

(id⊗ Γ) ◦ Γ = (Γ⊗ id) ◦ Γ.

(3) a left Haar wight ϕ, i.e. a n.f.s weight ϕ on M satisfying

(ι⊗ ϕ)Γ(x) = ϕ(x)1

(4) a right Haar weight ψ, i.e. n.f.s weight ψ on M satisfying

(ψ ⊗ ι)Γ(x) = ψ(x)1.

It is known that for every locally compact quantum group G = (M,Γ, ϕ, ψ),
there exists a dual quantum group Ĝ = (M̂, Γ̂, ϕ̂, ψ̂) such that we may
obtain the perfect Pontryagin duality

ˆ̂G = G.
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Commutative LCQG

Let G be a locally compact group. There exists a natural co-multiplication

Γa : f ∈ L∞(G)→ Γa(f) ∈ L∞(G)⊗̄L∞(G)

given by

Γa(f)(s, t) = f(st).

It is easy to see the Γa is a normal injective *-homomorphism such that
it satisfies the co-associativity condition

(Γa ⊗ ι)Γa = (ι⊗ Γa)Γa

i.e. we have

(Γa ⊗ ι)Γa(f)(s, t, u) = f((st)u) = f(s(tu)) = (ι⊗ Γa)Γa(f)(s, t, u).

There is a left Haar weight ϕa : L∞(G)+ → [0,∞] given by the integra-
tion

ϕa(h) =
∫
G
h(s)ds

w.r.t. the left Haar measure on G. We can obtain the right Haar weight
ψa by taking the integration w.r.t. the right Haar measure.

Then Ga = (L∞(G),Γa, ϕa, ψa) is a commutative LCQG.
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Co-commutative LCQG

Let G be a locally compact group. There exists a natural co-associative

co-multiplication

ΓG : V N(G)→ V N(G)⊗̄V N(G)

on V N(G) given by

ΓG(λs) = λs ⊗ λs.

This is co-commutative in the sense that

Σ ◦ ΓG = ΓG.

Moreover, we can obtain a normal faithful (Plancherel) weight ϕG = ψG
on L(G). So Ĝa = (V N(G),ΓG, ϕG, ψG) is a co-commutative LCQG.

Remark If G is a discrete group, then

ϕG(x) = ψG(x) = 〈xδe|δe〉.
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Banach Algebra Structure on L1(G) = L∞(G)∗

The co-multiplication

Γ : L∞(G)→ L∞(G)⊗̄L∞(G)

induces an associative completely contractive multiplication

? = Γ∗ : f1 ⊗ f2 ∈ L1(G)⊗̂L1(G)→ f1 ? f2 = (f1 ⊗ f2) ◦ Γ ∈ L1(G)

on L1(G) = M∗ such that A = (L1(G), ?) is a faithful completely con-
tractive Banach algebra with

〈L1(G) ? L1(G)〉 = L1(G).

If Ga is a commutative LCQG, then ? = Γa∗ is just the convolution on
the convolution algebra

L1(Ga) = L1(G).

If Ĝa is a co-commutative LCQG, then ? = Γ̂∗ is just the pointwise
multiplication on the Fourier algebra

L1(Ĝa) = V N(G)∗ = A(G).
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Summary

For a locally compact quantum group G, we have the following related

algebras.

L∞(G) = M

Cu(G)→ C0(G)

L1(G)

Mu(G) = Cu(G)∗

We say that G is discrete if L1(G) is unital, and G is compact if C0(G)

is unital.

It is known that G is compact if and only if Ĝ is discrete.
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When G is a Locally Compact Group

we have

L∞(G) = L∞(G) L∞(Ĝ) = V N(G)

Cu(G) = C0(G) = C0(G) C∗r(G)← C∗(G)

L1(G) = L1(G) L1(Ĝ) = A(G)

Mu(G) = M(G) Mu(Ĝ) = B(G)

where

A(G) = {f : G→ C : f(s) = 〈λsξ|η〉} = V N(G)∗

is the Fourier algebra of G and B(G) = C∗(G)∗ be the Fourier-Stieltjes

algebra of G.
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Let G = (L∞(G),Γ, ϕ, ψ) be a LCQG and let µ be a quantum measure,

i.e. a states in Mu(G) = C∗u(G)∗. We can define a right multiplication

map

mµ : f ∈ L1(G)→ f ? µ ∈ L1(G)

on L1(G) such that its adjoint map

Φµ = m∗µ

is a Markov operator on L∞(G) and we can consider the space

Hµ = {x ∈ L∞(G) : Φµ(x) = x}

of all µ-harmonic operators.

As we discussed before, there is a conditional expectation

E : L∞(G)→Hµ ⊆ L∞(G)

from L∞(G) onto Hµ given by the Banach limit

〈E(h), f〉 = lim
B
〈Φn

µ(h), f〉 = lim
B
〈h, f ? µn〉

for all h ∈ L∞(G) and f ∈ L1(G).
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We can also consider E defined by Cesàro sums

〈E(h), f〉 = lim
U
〈
1

n
(Φµ + · · ·+ Φn

µ)(h), f〉 = lim
U
〈h,

1

n
f ? (µ+ · · ·+ µn)〉

over any ultrafilder U on N. We can obtain a von Neumann algebra

product

x ◦ y = E(xy)

on Hµ, which is independent from the choice of E.

We call the von Neumann algebra (Hµ, ◦) the µ-Poisson boundary of

(G, µ).
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Subalgebra Question

In this quantum group setting, we say that µ ∈Mu(G) is non-degenerate

if for any non-zero positive x ∈ Cu(G), we have 〈x, µn〉 6= 0 for some

n ∈ N.

Theorem [K-N-R]: Let G be a locally compact quantum group and µ

a non-degerate state in Mu(G). Then TFAE:

1) Hµ is a subalgebra of L∞(G);

2) Hµ = C1.
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Compact Quantum Group Case

Using a result of Franz and Skalski on the idempotent state on compact

quantum groups, we can obtain the following result.

Theorem [K-N-R]: Let G be a compact quantum group and let µ be

a state in Mu(G) = Cu(G)∗. Then the Poisson boundary Hµ is always a

von Neumann subalgebra of L∞(G) !

If µ is non-degenerate, we must have Hµ = C1.
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A Characterization of Amenability

Theorem [K-N-R]: Let G be a locally compact quantum group with

separable L1(G). Then TFAE:

1) G is amenable, i.e. there is a state φ : L∞(G)→ C such that

(ι⊗ φ) ◦ Γ(x) = φ(x)1

for all x ∈ L∞(G).

2) There exists a quantum probability measure µ ∈ Mu(G) = Cu(G)∗

such that Hµ = C1.
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Some More Properties of Φµ

The Markov operator Φµ satisifes the following properties:

1. Φµ is fathful and invariant w.r.t the right Haar weight ψ, i.e.

ψ ◦Φµ = ψ

on L∞(G).

2. Φµ satisfies the covariance condition

Γ ◦Φµ = (ι⊗Φµ) ◦ Γ

3. It follows from 2) that

α = Γ|Hµ : Hµ → L∞(G)⊗̄FHµ

defines a left coaction of G on the Poisson boundary (Hµ, ◦), i.e α is a

weak* continuous unital *-homomorphism injection such that

(ι⊗ α) ◦ α = (Γ⊗ ι) ◦ α
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Outline of Proof:

First, let us show that α = Γ|Hµ : Hµ → L∞(G)⊗̄FHµ.

Given h ∈ Hµ ⊆ L∞(G), we have from 2) that

(ι⊗Φµ)Γ(h) = Γ(Φµ(h)) = Γ(h) ∈ L∞(G)⊗̄L∞(G).

Then for any f ∈ L∞(G), the element

hf = (f ⊗ ι)Γ(h) ∈ L∞(G)

is actually contained in Hµ since

Φµ(hf) = Φµ((f ⊗ ι)Γ(h)) = (f ⊗ ι)(ι⊗Φµ)Γ(h) = (f ⊗ ι)Γ(h) = hf .

This shows that the element hf = (f ⊗ ι)Γ(h) ∈ Hµ.

Therefore, Γ maps Hµ into L∞(G)⊗̄FHµ.
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Next, we note that when we regard Hµ as the von Neumann algebra, the

above Fubini product coincides with the von Neumann algebra product,

i.e. we have

L∞(G)⊗̄Hµ = L∞(G)⊗̄FHµ.

We show that α = Γ|Hµ is a unital *-homomorphism from von Neumann

algebra Hµ into the von Neumann algebra L∞(G)⊗̄Hµ.

Given x, y ∈ Hµ, we obtain that

α(x ◦ y) = Γ(E(xy)) = Γ(lim
U

1

n

n∑
k=1

Φk
µ(xy)) = lim

U
1

n

n∑
k=1

Γ(Φk
µ(xy))

= lim
U

1

n

n∑
k=1

(ι⊗Φk
µ)(Γ(xy)) = (ι⊗ E)(Γ(x)Γ(y))

= α(x) ◦ α(y) ∈ L∞(G)⊗̄Hµ.

Since Γ is a comultiplication on L∞(G), it is clear that α satisfies

(ι⊗ α) ◦ α = (Γ⊗ ι) ◦ α.

So α defines a left coaction of G on Hµ.
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Hence

α = Γ|Hµ : Hµ → L∞(G)⊗̄Hµ

defines a left co-action of G on Hµ.

Hence we can consider the crossed product

Hµ o G = {Γµ(Hµ) ∪ (L∞(Ĝ)⊗ 1)}′′.

What can we say about this crossed product ?
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Extension to B(L2(G))

Theorem [J-N-R]: Every weak* continuous ucp map Φ on L∞(G)

satisfying covariance condition 2) has a unique weak* continuous ucp

extension Θ(µ) to B(L2(G)) such that

Θ(µ)(x̂yẑ) = x̂Θ(µ(y)ẑ.

We can consider the Poisson boundary HΘ(µ) of (B(L2(G)),Θ(µ)) and

it is seen that

Hµ ∪ L∞(Ĝ) ⊆ HΘ(µ).

Theorem [K-N-R]: We have the *-isomorphism

Hµ o G = HΘ(µ).

Therefore, Hµ o G is an injective von Neumann algebra !

This shows that the coaction G on Hµ is amenable !
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Remark: This result was first proved by Izumi (in 2004) for discrete

groups. It was proved later on by Jawoski and Neufang (in 2007) for

L∞(G) case and by Neufang and Runde for V N(G) case (requiring G

has the AP).
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Summary

µ− harmonic on L∞(G) ϕ− harmonic on VN(G)
Chu and Lau

µ− harmonic on B(L2(G)) ϕ− harmonic on B(L2(G))
Izumi, Jaworski and Neufang Neufang and Runde

HΘ(µ) = Hµ oG HΘ(ϕ) = Hϕ o Ĝ

undersomemildconditions

In general, we have

HΘ(µ) = Hµ o G

for general locally compact quantum groups.
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Thank you for your attention !
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