Hypercontractivity of the Ornstein-Uhlenbeck and Poisson semigroups for free products

Mathilde Perrin

Instituto de Ciencias Matemáticas Madrid

—Joint work with Marius Junge, Carlos Palazuelos, Javier Parcet and Éric Ricard—

Operator spaces, Quantum probability and Applications

Wuhan, China, June 4-10, 2012

A. Fourier Analysis

For $f\in L_p(\mathbb{T})$ we consider the Fourier coefficients $\widehat{f}(k)=\int_{\mathbb{T}}f(x)e^{-2\pi ikx}\,dx$

- Riemann-Lebesgue: $f \in L_1(\mathbb{T}) \Rightarrow \widehat{f}(k) \to 0$ (slow convergence).
- Plancherel: $f \in L_2(\mathbb{T}) \Rightarrow \sum_{k \in \mathbb{Z}} |\widehat{f}(k)|^2 < \infty$ (faster convergence).
- Hausdorff-Young: $f \in L_p(\mathbb{T}) \ (1$

Classical Problem Find conditions for $\psi:\mathbb{Z}\to\mathbb{C}$ such that

$$f \in L_p(\mathbb{T}) \Rightarrow \sum_{k} |\psi(k)|^2 |\widehat{f}(k)|^2 < \infty.$$

- i) $\psi = \chi_{\Omega} \to \Lambda_p$ -sets (Rudin, Bourgain, Talagrand...).
- ii) ψ rational \to Hausdorff-Young inequality given above.
- iii) ψ exponential \to If $\psi(k) = r^{|k|} = e^{-t|k|} \to \text{Poisson semigroup } e^{-t|\cdot|}$.

Hypercontractivity of the Poisson semigroup. For 1 we have

$$\left\| \sum_{k} e^{-t|k|} \widehat{f}(k) \exp_{k} \right\|_{q} \le \|f\|_{p} \iff t \ge \frac{1}{2} \log \left(\frac{q-1}{p-1} \right).$$

Bonami '70 + Beckner '75 + Weissler '80.

B. Quantum field theory

The problem of the existence of quantum fields lead (in the late 60's) to look for lower bounds for Hamiltonians of the form H=A+V, where A is an elliptic second order differential operator, and V is a potential. Assume that A is a Dirichlet form on \mathbb{R}^n , i.e., there is a measure μ_A such that

$$\langle Af, g \rangle = \int_{\mathbb{R}^n} \nabla f \cdot \nabla g \ d\mu_A.$$

Important examples:

• Lebesgue measure $\leadsto A_m f(x) = -\Delta f(x)$

• Gaussian measure
$$d\mu_{\gamma}(x)=rac{\exp(-|x|^2/2)}{(2\pi)^{rac{n}{2}}}dx \leadsto A_{\gamma}f(x)=-\Delta f(x)+x\cdot\nabla f(x)$$

Hypercontractivity of the Ornstein-Uhlenbeck semigroup

$$\left\| e^{-tA_{\gamma}} f \right\|_{q} \le \|f\|_{p} \iff t \ge \frac{1}{2} \log \left(\frac{q-1}{p-1} \right) \quad \text{for} \quad 1$$

Nelson '66 + Glimm '68 + Segal '70 + Nelson '73 + \cdots

Corollary [Nelson '73]. For V real and $H_{\gamma} = A_{\gamma} + V$ we have

$$\langle H_{\gamma}f, f \rangle_{L_{2}(\mu_{\gamma})} \ge -\|f\|_{L_{2}(\mu_{\gamma})}^{2} \log \|e^{-V}\|_{L_{2}(\mu_{\gamma})} \quad \text{(dim } \le \infty).$$

C. Logarithmic Sobolev inequalities

(LS_{$$\mu$$})
$$\int_{\mathbb{R}^n} |f(x)|^2 \log |f(x)|^2 d\mu(x) \le 2 \int_{\mathbb{R}^n} |\nabla f(x)|^2 d\mu(x) + ||f||_{L_2(\mu)}^2 \log ||f||_{L_2(\mu)}^2.$$

Gross '75 + Weissler '78 + Carlen '91 + Beckner '92 + \cdots

Remarks:

• Dimension independent, infinitesimal version of Sobolev inequalities:

$$||f||_{L_q(\mathbb{R}^n,dx)} \le C_{p,n} |||\nabla f|||_{L_p(\mathbb{R}^n,dx)} \quad \text{ for } f \in C_c^{\infty}, \ \frac{1}{q} = \frac{1}{p} - \frac{1}{n}, \ 1 \le p < \infty.$$

• (LS_{$$\mu$$}) \Leftrightarrow (HC _{μ}) where $\langle A_{\mu}f, g \rangle = \int_{\mathbb{R}^n} \nabla f \cdot \nabla g \ d\mu$.

• HC for $\mathbb{Z}_2 \leadsto \mathsf{Bonami\text{-}Beckner}\ 2\text{-point inequality}$

$$\left(\frac{1}{2}\left[\left(\frac{1+r}{2}\right)a + \left(\frac{1-r}{2}\right)b\right]^q + \frac{1}{2}\left[\left(\frac{1-r}{2}\right)a + \left(\frac{1+r}{2}\right)b\right]^q\right)^{\frac{1}{q}} \le \left(\frac{a^p + b^p}{2}\right)^{\frac{1}{p}}.$$

- HC for $\mathbb{Z}_2 \leadsto \mathsf{Bonami\text{-}Beckner}\ 2\text{-point inequality}$
- HC for Clifford algebras → Gaussians Fermions

$$\|e^{-tA_{-1}}f\|_q \le \|f\|_p \iff t \ge \frac{1}{2}\log\left(\frac{q-1}{p-1}\right)$$
 $[A_{-1} = \text{Femionic number operator}].$

Gross '75 + Ball-Carlen-Lieb '94 + Carlen-Lieb '93.

- HC for $\mathbb{Z}_2 \leadsto \mathsf{Bonami\text{-}Beckner}\ 2\text{-point inequality}$
- HC for q-deformed algebras \rightsquigarrow Free Gaussians, Araki-Woods factors...
 - a) Type II \rightarrow Biane '97.
 - b) Type III \rightarrow Lee-Ricard '11.

- HC for $\mathbb{Z}_2 \leadsto \mathsf{Bonami\text{-}Beckner}\ 2\text{-}\mathsf{point}\ \mathsf{inequality}$
- ◆ HC for Clifford algebras → Gaussians Fermions
- HC for q-deformed algebras \rightsquigarrow Free Gaussians, Araki-Woods factors...
- HC for complex manifolds → shorter contraction time for holomorphic functions

$$\|e^{-tA_{\pm 1}}f\|_q \le \|f\|_p \iff t \ge \frac{1}{2}\log\left(\frac{q}{p}\right).$$

Janson '83 + Gross '99 + Kemp '05 + Krolac '10.

- HC for $\mathbb{Z}_2 \leadsto \mathsf{Bonami\text{-}Beckner}\ 2\text{-point inequality}$
- HC for Clifford algebras → Gaussians Fermions
- \bullet HC for q-deformed algebras \leadsto Free Gaussians, Araki-Woods factors...
- HC for complex manifolds → shorter contraction time for holomorphic functions

Connections / Applications

i) Differential GeometryRicci Curvature (Bakry)Poincaré Conjecture (Perelman)

ii) Information TheoryEntropy inequalities (Faris)Bell inequalities (Regev-de Wolf)

iii) Other related results Concentration of measures (Herbst, Ledoux) Optimal Hausdorff-Young inequalities (Beckner)...

Survey

L. Gross, Hypercontractivity, logarithmic Sobolev inequalities and applications: A survey of surveys. Diffusion, quantum theory, and radically elementary mathematics: a celebration of Edward Nelson's contribution to science. Ed. by William G. Faris. Princeton University Press, 2006.

Study hypercontractivity for free products in the two following cases:

- → Ornstein-Uhlenbeck semigroup
- → Poisson semigroup

Definition

We say that a semigroup $(P_t)_{t\geq 0}$ is Hypercontractive with constant α if for $1< p\leq q<\infty$ we have

$$||P_t||_{L_p \to L_q} \le 1$$
 for $t \ge \frac{\alpha}{2} \log \left(\frac{q-1}{p-1}\right)$.

If $\alpha = 1$ we say that the semigroup is Hypercontractive with optimal constant.

Remark

Note that by Gross' argument, which has been extended to the noncommutative L_p spaces by Olkiewicz and Zegarlinski ('98), this will give Logarithmic Sobolev inequalities of the form

$$\tau(|f|^2 \log |f|^2) \le 2\alpha \langle Nf, f \rangle + ||f||_2^2 \log ||f||_2^2$$
, for $P_t = e^{-tN}$.

In the tracial case, this reduces the problem to the study of

Hypercontractivity
$$L_2 \to L_q$$
 for $q \ge 2$.

1.Free product and O-U semigroup (Probabilistic approach)

Spin Systems with mixed Commutation and Anti-commutation Relations

Let I be a finite subset of $\mathbb Z$ and $\varepsilon:I\times I\to\{-1,1\}$ be such that

$$\varepsilon(i,j) = \varepsilon(j,i)$$
 and $\varepsilon(i,i) = -1$.

We consider the Spin Algebra $\mathcal{A}(I,\varepsilon)$ with generators $(x_i)_{i\in I}$ and relations

$$x_i x_j - \varepsilon(i, j) x_j x_i = 2\delta_{i, j}$$
 for $i, j \in I$.

- Vector Basis: $x_A = x_{i_1} \cdots x_{i_p}$ if $A = \{i_1, \cdots, i_p\} \subset I$, and $x_{\emptyset} = 1$.
- Antilinear involution: $x_i^* = x_i$.
- Trace: $\tau(x_A) = \delta_{A,\emptyset}$.

→ von Neumann algebra structure.

Definition

The arepsilon-Ornstein-Uhlenbeck semigroup on $\mathcal{A}(I,arepsilon)$ is given by

$$P_t^{\varepsilon} x_A = e^{-t|A|} x_A$$
 for $A \subset I$.

Theorem[Carlen-Lieb '92 + Biane '97]

The ε -Ornstein-Uhlenbeck semigroup P_t^{ε} is hypercontractive with optimal constant.

1.Free product and O-U semigroup (Probabilistic approach)

Theorem A

Let $(\mathcal{A}_{\beta})_{\beta}$ be a family of Spin algebras, and denote by $(P_t^{\beta})_{\beta}$ the corresponding family of Ornstein-Uhlenbeck semigroups. Then the free product $*_{\beta}P_t^{\beta}$ is hypercontractive with optimal constant on $*_{\beta}\mathcal{A}_{\beta}$.

Here $*_{\beta}P_t^{\beta}$ is given by

$$*_{\beta}P_{t}^{\beta}(x_{A_{1}}^{\beta_{1}}x_{A_{2}}^{\beta_{2}}\cdots x_{A_{m}}^{\beta_{m}}) = e^{-t(|A_{1}|+|A_{2}|+\cdots+|A_{m}|)}x_{A_{1}}^{\beta_{1}}x_{A_{2}}^{\beta_{2}}\cdots x_{A_{m}}^{\beta_{m}}$$

for $\beta_1 \neq \beta_2 \neq \cdots \neq \beta_m$ and $x_{A_i}^{\beta_i} \in \mathcal{A}_{\beta_i}$.

Corollary

With an extra use of Speicher's Central Limit Theorem, we obtain that the free product of Ornstein-Uhlenbeck semigroups is hypercontractive with optimal constant on the free product of q-deformed algebras $*\Gamma_q(\mathcal{H})$.

Observation

In particular, $\mathcal{L}(\mathbb{Z}_2)$ is a Spin algebra (with only one generator), and the Ornstein-Uhlenbeck semigroup coincide with the Poisson semigroup on $\mathcal{L}(\mathbb{Z}_2)$. Moreover, we have

$$\mathcal{L}(\mathbb{Z}_2) * \cdots * \mathcal{L}(\mathbb{Z}_2) = \mathcal{L}(\mathbb{Z}_2 * \cdots * \mathbb{Z}_2).$$

2. Bonami-Beckner Theorem for free product

Let G be a discrete group and $\mathcal{L}(G) \subset B(\ell_2(G))$ be the associated group von Neumann algebra.

The Bonami-Beckner Theorem extends to \mathbb{Z}_2^n and \mathbb{Z}^n . We consider the two following free products:

$$G = \underbrace{\mathbb{Z}_2 * \cdots * \mathbb{Z}_2}_{n}$$

$$G = \underbrace{\mathbb{Z} * \cdots * \mathbb{Z}}_{n} = \mathbb{F}_n$$

For these groups, we define the usual length function

 $\left|w\right|=\ \mathrm{number\ of\ letters\ in\ the\ reduced\ word}$

and the associated Poisson semigroup

$$P_t(f) = \sum_{w \in G} e^{-t|w|} \hat{f}(w) \lambda(w), \quad \text{ for } f = \sum_{w \in G} \hat{f}(w) \lambda(w) \in \mathcal{L}(G).$$

Remark

$$P_t = e^{-tN}$$
 where N is given by $N(f) = \sum_{w \in G} |w| \hat{f}(w) \lambda(w)$.

2.a) Bonami-Beckner Theorem for free product (Probabilistic approach)

Poisson semigroup:
$$P_t(f) = \sum_{w \in G} e^{-t|w|} \hat{f}(w) \lambda(w) \quad \text{ for } f = \sum_{w \in G} \hat{f}(w) \lambda(w) \in \mathcal{L}(G).$$

As a direct consequence of Theorem A we have

Corollary

- 1) $G = \mathbb{Z}_2 * \cdots * \mathbb{Z}_2$: The Poisson semigroup P_t is hypercontractive with optimal constant.
- **2)** $G = \mathbb{Z} * \cdots * \mathbb{Z} = \mathbb{F}_n$: The Poisson semigroup P_t is hypercontractive with constant 2.

Proof

 $1) \Rightarrow 2)$ We use the embedding

$$\phi: \left\{ \begin{array}{c} \mathbb{F}_n \hookrightarrow (\mathbb{Z}_2 * \mathbb{Z}_2)^{*n} \\ g_i \mapsto u_i v_i \end{array} \right.,$$

where g_1, \dots, g_n denote the generators of \mathbb{F}_n and u_i (resp. v_i) is the generator of the first (resp. second) copy of \mathbb{Z}_2 in the i-th copy of $\mathbb{Z}_2 * \mathbb{Z}_2$.

Observe that $|\phi(w)| = 2|w|$ for $w \in \mathbb{F}_n$.

2.a) Bonami-Beckner Theorem for free product (Probabilistic approach)

Poisson semigroup:
$$P_t(f) = \sum_{w \in G} e^{-t|w|} \hat{f}(w) \lambda(w) \quad \text{ for } f = \sum_{w \in G} \hat{f}(w) \lambda(w) \in \mathcal{L}(G).$$

As a direct consequence of Theorem A we have

Corollary

- 1) $G = \mathbb{Z}_2 * \cdots * \mathbb{Z}_2$: The Poisson semigroup P_t is hypercontractive with optimal constant.
- **2)** $G = \mathbb{Z} * \cdots * \mathbb{Z} = \mathbb{F}_n$: The Poisson semigroup P_t is hypercontractive with constant 2.

Logarithmic Sobolev Inequalities

For any $f \in \mathcal{L}(G)$ we have

1)
$$G = \mathbb{Z}_2 * \cdots * \mathbb{Z}_2$$
:

$$\tau(|f|^2 \log |f|^2) \le 2 \sum_{w \in G} |w| \hat{f}(w)^2 + ||f||_2^2 \log ||f||_2^2.$$

2)
$$G = \mathbb{Z} * \cdots * \mathbb{Z} = \mathbb{F}_n$$
:
$$\tau(|f|^2 \log |f|^2) \le 4 \sum_{w \in G} |w| \hat{f}(w)^2 + ||f||_2^2 \log ||f||_2^2.$$

2.b) Bonami-Beckner Theorem for free product (Combinatorial approach)

Theorem B

Let $G = \mathbb{F}_2$.

Then the Poisson semigroup P_t is hypercontractive with optimal constant from $L_2(\mathcal{L}(\mathbb{F}_2))$ to $L_q(\mathcal{L}(\mathbb{F}_2))$, for q large even integer $(q \in 2\mathbb{N} \text{ and } q \geq 7044)$, i.e.,

$$||P_t(f)||_q \le ||f||_2 \quad \Leftrightarrow \quad t \ge \frac{1}{2}\log(q-1).$$

Theorem C

Let $G = \mathbb{F}_n$.

Then there exists a constant $\alpha(n) \geq 1$ such that the Poisson semigroup P_t is hypercontractive with constant $\alpha(n)$ from $L_2(\mathcal{L}(\mathbb{F}_n))$ to $L_4(\mathcal{L}(\mathbb{F}_n))$, i.e.,

$$||P_t(f)||_4 \le ||f||_2$$
 for $t \ge \frac{\alpha(n)}{2}\log(3)$.

Corollary

Let $G = \mathbb{F}_n$.

Then there exists a constant $\alpha(n) \geq 1$ such that the Poisson semigroup P_t is hypercontractive with constant $\alpha(n) \log(3)$, i.e., for 1 we have

$$||P_t(f)||_q \le ||f||_p$$
 for $t \ge \frac{\alpha(n)\log(3)}{2}\log\left(\frac{q-1}{p-1}\right)$.

2.c) Bonami-Beckner Theorem for free product (Comparison of the two approaches - $G = \mathbb{F}_2$)

Theorem B

Let $G = \mathbb{F}_2$.

Then the Poisson semigroup P_t is hypercontractive with optimal constant from $L_2(\mathcal{L}(\mathbb{F}_2))$ to $L_q(\mathcal{L}(\mathbb{F}_2))$, for q large even integer $(q \in 2\mathbb{N} \text{ and } q \geq 7044)$, i.e.,

$$||P_t(f)||_q \le ||f||_2 \quad \Leftrightarrow \quad t \ge \frac{1}{2}\log(q-1).$$

Remarks

- With more computations we could improve the range $q \geq 7044$.
- Interpolation + Log Sobolev inequalities
- \leadsto Hypercontractivity of the Poisson semigroup with constant $\alpha \simeq 4,43$
- \leadsto the probabilistic approach gives a better constant for the HC $L_p \to L_q$.
- Interpolation
- \leadsto the combinatorial approach gives a better constant for the HC $L_2 \to L_q$ for $q \ge 7044$.

2.c) Bonami-Beckner Theorem for free product (Comparison of the two approaches - $G = \mathbb{F}_n$)

Corollary of Theorem C

Let $G = \mathbb{F}_n$.

Then there exists a constant $\alpha(n) \geq 1$ such that the Poisson semigroup P_t is hypercontractive with constant $\alpha(n) \log(3)$, i.e., for 1 we have

$$||P_t(f)||_q \le ||f||_p$$
 for $t \ge \frac{\alpha(n)\log(3)}{2}\log\left(\frac{q-1}{p-1}\right)$.

Remarks

- $\alpha(n) \log(3) \sim \log(2n)$ for n large.
- We have

$$\alpha(2)\log(3) < 2$$
 and $\alpha(3)\log(3) < 2$

 \rightsquigarrow the combinatorial approach gives a better constant for the HC for \mathbb{F}_2 and \mathbb{F}_3 , the probabilistic one gives a better constant for the HC for \mathbb{F}_n , $n \geq 4$.