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A. Fourier Analysis

For f ∈ Lp(T) we consider the Fourier coefficients f̂ (k) =

∫
T
f (x)e−2�ikx dx

∙ Riemann-Lebesgue: f ∈ L1(T)⇒ f̂ (k)→ 0 (slow convergence).

∙ Plancherel: f ∈ L2(T)⇒
∑

k∈ℤ ∣f̂ (k)∣2 <∞ (faster convergence).

∙ Hausdorff-Young: f ∈ Lp(T) (1 < p < 2)⇒
∑

k k
2�∣f̂ (k)∣2 <∞ (� < 1

2 −
1
p).

Classical Problem Find conditions for  : ℤ→ ℂ such that

f ∈ Lp(T)⇒
∑

k
∣ (k)∣2∣f̂ (k)∣2 <∞.

i)  = �Ω → Λp-sets (Rudin, Bourgain, Talagrand...).

ii)  rational → Hausdorff-Young inequality given above.

iii)  exponential → If  (k) = r∣k∣ = e−t∣k∣ → Poisson semigroup e−t∣⋅∣.

Hypercontractivity of the Poisson semigroup. For 1 < p ≤ q <∞ we have∥∥∥∑
k
e−t∣k∣f̂ (k) expk

∥∥∥
q
≤ ∥f∥p ⇔ t ≥ 1

2
log
(q − 1

p− 1

)
.

Bonami ’70 + Beckner ’75 + Weissler ’80.



B. Quantum field theory

The problem of the existence of quantum fields lead (in the late 60’s) to look for lower
bounds for Hamiltonians of the form H = A + V , where A is an elliptic second order
differential operator, and V is a potential. Assume that A is a Dirichlet form on ℝn, i.e.,
there is a measure �A such that

⟨Af, g⟩ =

∫
ℝn
∇f ⋅ ∇g d�A.

Important examples:

∙ Lebesgue measure ⇝ Amf (x) = −Δf (x)

∙ Gaussian measure d�
(x) =
exp(−∣x∣2/2)

(2�)
n
2

dx ⇝ A
f (x) = −Δf (x) + x ⋅ ∇f (x)

Hypercontractivity of the Ornstein-Uhlenbeck semigroup

(HC�
)
∥∥e−tA
f∥∥

q
≤ ∥f∥p ⇔ t ≥ 1

2
log
(q − 1

p− 1

)
for 1 < p ≤ q <∞.

Nelson ’66 + Glimm ’68 + Segal ’70 + Nelson ’73 + ⋅ ⋅ ⋅

Corollary [Nelson ’73]. For V real and H
 = A
 + V we have〈
H
f, f

〉
L2(�
)

≥ −∥f∥2
L2(�
) log ∥e−V ∥L2(�
) (dim ≤ ∞).



C. Logarithmic Sobolev inequalities

(LS�)

∫
ℝn
∣f (x)∣2 log ∣f (x)∣2d�(x) ≤ 2

∫
ℝn
∣∇f (x)∣2d�(x) + ∥f∥2

L2(�) log ∥f∥2
L2(�).

Gross ’75 + Weissler ’78 + Carlen ’91 + Beckner ’92 + ⋅ ⋅ ⋅

Remarks:

∙ Dimension independent, infinitesimal version of Sobolev inequalities:

∥f∥Lq(ℝn,dx) ≤ Cp,n∥∣∇f ∣∥Lp(ℝn,dx) for f ∈ C∞c ,
1

q
=

1

p
− 1

n
, 1 ≤ p <∞.

∙ (LS�) ⇔ (HC�) where ⟨A�f, g⟩ =

∫
ℝn
∇f ⋅ ∇g d�.



Some known results of HC and Applications

∙ HC for ℤ2 ⇝ Bonami-Beckner 2-point inequality( 1

2

[(1 + r

2

)
a +

(1− r
2

)
b
]q

+
1

2

[(1− r
2

)
a +

(1 + r

2

)
b
]q )1

q ≤
(ap + bp

2

)1
p
.



Some known results of HC and Applications

∙ HC for ℤ2 ⇝ Bonami-Beckner 2-point inequality

∙ HC for Clifford algebras ⇝ Gaussians Fermions∥∥e−tA−1f
∥∥
q
≤ ∥f∥p ⇔ t ≥ 1

2
log
(q − 1

p− 1

)
[A−1 = Femionic number operator].

Gross ’75 + Ball-Carlen-Lieb ’94 + Carlen-Lieb ’93.



Some known results of HC and Applications

∙ HC for ℤ2 ⇝ Bonami-Beckner 2-point inequality

∙ HC for Clifford algebras ⇝ Gaussians Fermions

∙ HC for q-deformed algebras ⇝ Free Gaussians, Araki-Woods factors...

a) Type II → Biane ’97.

b) Type III → Lee-Ricard ’11.



Some known results of HC and Applications

∙ HC for ℤ2 ⇝ Bonami-Beckner 2-point inequality

∙ HC for Clifford algebras ⇝ Gaussians Fermions

∙ HC for q-deformed algebras ⇝ Free Gaussians, Araki-Woods factors...

∙ HC for complex manifolds ⇝ shorter contraction time for holomorphic functions∥∥e−tA±1f
∥∥
q
≤ ∥f∥p ⇔ t ≥ 1

2
log
(q
p

)
.

Janson ’83 + Gross ’99 + Kemp ’05 + Krolac ’10.



Some known results of HC and Applications

∙ HC for ℤ2 ⇝ Bonami-Beckner 2-point inequality

∙ HC for Clifford algebras ⇝ Gaussians Fermions

∙ HC for q-deformed algebras ⇝ Free Gaussians, Araki-Woods factors...

∙ HC for complex manifolds ⇝ shorter contraction time for holomorphic functions

∙ Connections / Applications

i) Differential Geometry
Ricci Curvature (Bakry)
Poincaré Conjecture (Perelman)

ii) Information Theory
Entropy inequalities (Faris)
Bell inequalities (Regev-de Wolf)

iii) Other related results
Concentration of measures (Herbst, Ledoux)
Optimal Hausdorff-Young inequalities (Beckner)...

∙ Survey
L. Gross, Hypercontractivity, logarithmic Sobolev inequalities and applications: A survey of surveys. Diffusion, quantum

theory, and radically elementary mathematics: a celebration of Edward Nelson’s contribution to science. Ed. by William

G. Faris. Princeton University Press, 2006.



Aim

Study hypercontractivity for free products in the two following cases:

⇝ Ornstein-Uhlenbeck semigroup

⇝ Poisson semigroup

Definition
We say that a semigroup (Pt)t≥0 is Hypercontractive with constant � if for 1 < p ≤ q <∞
we have

∥Pt∥Lp→Lq ≤ 1 for t ≥ �

2
log
(q − 1

p− 1

)
.

If � = 1 we say that the semigroup is Hypercontractive with optimal constant.

Remark
Note that by Gross’ argument, which has been extended to the noncommutative Lp spaces
by Olkiewicz and Zegarlinski (’98), this will give Logarithmic Sobolev inequalities of the
form

� (∣f ∣2 log ∣f ∣2) ≤ 2�⟨Nf, f⟩ + ∥f∥2
2 log ∥f∥2

2, for Pt = e−tN .

In the tracial case, this reduces the problem to the study of

Hypercontractivity L2 → Lq for q ≥ 2.



1.Free product and O-U semigroup (Probabilistic approach)

Spin Systems with mixed Commutation and Anti-commutation Relations

Let I be a finite subset of ℤ and " : I × I → {−1, 1} be such that

"(i, j) = "(j, i) and "(i, i) = −1.

We consider the Spin Algebra A(I, ") with generators (xi)i∈I and relations

xixj − "(i, j)xjxi = 2�i,j for i, j ∈ I.

∙ Vector Basis: xA = xi1 ⋅ ⋅ ⋅ xip if A = {i1, ⋅ ⋅ ⋅ , ip} ⊂ I , and x∅ = 1.

∙ Antilinear involution: x∗i = xi.

∙ Trace: � (xA) = �A,∅.

⇝ von Neumann algebra structure.

Definition
The "-Ornstein-Uhlenbeck semigroup on A(I, ") is given by

P "
t xA = e−t∣A∣xA for A ⊂ I.

Theorem[Carlen-Lieb ’92 + Biane ’97]
The "-Ornstein-Uhlenbeck semigroup P "

t is hypercontractive with optimal constant.



1.Free product and O-U semigroup (Probabilistic approach)

Theorem A
Let (A�)� be a family of Spin algebras, and denote by (P �

t )� the corresponding family

of Ornstein-Uhlenbeck semigroups. Then the free product ∗�P �
t is hypercontractive with

optimal constant on ∗�A�.

Here ∗�P �
t is given by

∗�P �
t (x�1

A1
x�2
A2
⋅ ⋅ ⋅ x�mAm) = e−t(∣A1∣+∣A2∣+⋅⋅⋅+∣Am∣)x�1

A1
x�2
A2
⋅ ⋅ ⋅ x�mAm

for �1 ∕= �2 ∕= ⋅ ⋅ ⋅ ∕= �m and x�iAi ∈ A�i.

Corollary
With an extra use of Speicher’s Central Limit Theorem, we obtain that the free product
of Ornstein-Uhlenbeck semigroups is hypercontractive with optimal constant on the free
product of q-deformed algebras ∗Γq(ℋ).

Observation
In particular, ℒ(ℤ2) is a Spin algebra (with only one generator), and the Ornstein-Uhlenbeck
semigroup coincide with the Poisson semigroup on ℒ(ℤ2). Moreover, we have

ℒ(ℤ2) ∗ ⋅ ⋅ ⋅ ∗ ℒ(ℤ2) = ℒ(ℤ2 ∗ ⋅ ⋅ ⋅ ∗ ℤ2).



2. Bonami-Beckner Theorem for free product

Let G be a discrete group and ℒ(G) ⊂ B(ℓ2(G)) be the associated group von Neumann
algebra.

The Bonami-Beckner Theorem extends to ℤn2 and ℤn .
We consider the two following free products:

⇝ G = ℤ2 ∗ ⋅ ⋅ ⋅ ∗ ℤ2︸ ︷︷ ︸
n

⇝ G = ℤ ∗ ⋅ ⋅ ⋅ ∗ ℤ︸ ︷︷ ︸
n

= Fn

For these groups, we define the usual length function

∣w∣ = number of letters in the reduced word

and the associated Poisson semigroup

Pt(f ) =
∑
w∈G

e−t∣w∣f̂ (w)�(w), for f =
∑
w∈G

f̂ (w)�(w) ∈ ℒ(G).

Remark
Pt = e−tN where N is given by N(f ) =

∑
w∈G

∣w∣f̂ (w)�(w).



2.a) Bonami-Beckner Theorem for free product (Probabilistic approach)

Poisson semigroup: Pt(f ) =
∑
w∈G

e−t∣w∣f̂ (w)�(w) for f =
∑
w∈G

f̂ (w)�(w) ∈ ℒ(G).

As a direct consequence of Theorem A we have

Corollary
1) G = ℤ2∗⋅ ⋅ ⋅∗ℤ2:The Poisson semigroup Pt is hypercontractive with optimal constant.

2) G = ℤ ∗ ⋅ ⋅ ⋅ ∗ ℤ = Fn:The Poisson semigroup Pt is hypercontractive with constant 2.

Proof
1)⇒ 2) We use the embedding

� :

{
Fn ↪→ (ℤ2 ∗ ℤ2)∗n

gi 7→ uivi
,

where g1, ⋅ ⋅ ⋅ , gn denote the generators of Fn and ui (resp. vi) is the generator of the first
(resp. second) copy of ℤ2 in the i-th copy of ℤ2 ∗ ℤ2.
Observe that ∣�(w)∣ = 2∣w∣ for w ∈ Fn.



2.a) Bonami-Beckner Theorem for free product (Probabilistic approach)

Poisson semigroup: Pt(f ) =
∑
w∈G

e−t∣w∣f̂ (w)�(w) for f =
∑
w∈G

f̂ (w)�(w) ∈ ℒ(G).

As a direct consequence of Theorem A we have

Corollary
1) G = ℤ2∗⋅ ⋅ ⋅∗ℤ2:The Poisson semigroup Pt is hypercontractive with optimal constant.

2) G = ℤ ∗ ⋅ ⋅ ⋅ ∗ ℤ = Fn:The Poisson semigroup Pt is hypercontractive with constant 2.

Logarithmic Sobolev Inequalities
For any f ∈ ℒ(G) we have

1) G = ℤ2 ∗ ⋅ ⋅ ⋅ ∗ ℤ2:

� (∣f ∣2 log ∣f ∣2) ≤ 2
∑
w∈G

∣w∣f̂ (w)2 + ∥f∥2
2 log ∥f∥2

2.

2) G = ℤ ∗ ⋅ ⋅ ⋅ ∗ ℤ = Fn:

� (∣f ∣2 log ∣f ∣2) ≤ 4
∑
w∈G

∣w∣f̂ (w)2 + ∥f∥2
2 log ∥f∥2

2.



2.b) Bonami-Beckner Theorem for free product (Combinatorial approach)

Theorem B
Let G = F2.
Then the Poisson semigroup Pt is hypercontractive with optimal constant from L2(ℒ(F2))
to Lq(ℒ(F2)), for q large even integer (q ∈ 2ℕ and q ≥ 7044), i.e.,

∥Pt(f )∥q ≤ ∥f∥2 ⇔ t ≥ 1

2
log(q − 1).

Theorem C
Let G = Fn.
Then there exists a constant �(n) ≥ 1 such that the Poisson semigroup Pt is hypercon-
tractive with constant �(n) from L2(ℒ(Fn)) to L4(ℒ(Fn)), i.e.,

∥Pt(f )∥4 ≤ ∥f∥2 for t ≥ �(n)

2
log(3).

Corollary
Let G = Fn.
Then there exists a constant �(n) ≥ 1 such that the Poisson semigroup Pt is hypercon-
tractive with constant �(n) log(3), i.e., for 1 < p ≤ q <∞ we have

∥Pt(f )∥q ≤ ∥f∥p for t ≥ �(n) log(3)

2
log
(q − 1

p− 1

)
.



2.c) Bonami-Beckner Theorem for free product
(Comparison of the two approaches - G = F2)

Theorem B
Let G = F2.
Then the Poisson semigroup Pt is hypercontractive with optimal constant from L2(ℒ(F2))
to Lq(ℒ(F2)), for q large even integer (q ∈ 2ℕ and q ≥ 7044), i.e.,

∥Pt(f )∥q ≤ ∥f∥2 ⇔ t ≥ 1

2
log(q − 1).

Remarks
∙ With more computations we could improve the range q ≥ 7044.

∙ Interpolation + Log Sobolev inequalities
⇝ Hypercontractivity of the Poisson semigroup with constant � ≃ 4, 43
⇝ the probabilistic approach gives a better constant for the HC Lp → Lq.

∙ Interpolation
⇝ the combinatorial approach gives a better constant for the HC L2 → Lq
for q ≥ 7044.



2.c) Bonami-Beckner Theorem for free product
(Comparison of the two approaches - G = Fn)

Corollary of Theorem C
Let G = Fn.
Then there exists a constant �(n) ≥ 1 such that the Poisson semigroup Pt is hypercon-
tractive with constant �(n) log(3), i.e., for 1 < p ≤ q <∞ we have

∥Pt(f )∥q ≤ ∥f∥p for t ≥ �(n) log(3)

2
log
(q − 1

p− 1

)
.

Remarks
∙ �(n) log(3)∼ log(2n) for n large.

∙ We have
�(2) log(3) < 2 and �(3) log(3) < 2

⇝ the combinatorial approach gives a better constant for the HC for F2 and F3,
the probabilistic one gives a better constant for the HC for Fn, n ≥ 4.


