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Quantum Mechanics: From theory to applications

• An isolated physical system is described by a density operator:
ρ : `n2 → `n2 such that ρ ≥ 0 and tr(ρ) = 1.
We denote ρ ∈ Sn

1 .

In particular, we say that ρ is pure if ρ = |ψ〉〈ψ| for a certain
unit vector |ψ〉 ∈ `n2.

• A measurement with a = 1, · · · ,K possible results is given by

a family of operators on `n2, {E a}Ka=1, such that
K∑

a=1

E a = 1.

We have

p(a) = tr(E aρ) probability of obtaining output a.

IDEA: THEORY ! EXPERIMENTAL DATA
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Quantum Entanglement of a bipartite state

• To describe a physical system AB formed by two physical
subsystems A and B we take tensor products: `n2,A ⊗2 `

n
2,B .

Then, ρAB ∈ Sn
1,A ⊗ Sn

1,B .

• We say that ρ is separable if it belongs to the convex hull of
product states ρA⊗ ρB . Otherwise, we say that ρ is entangled.
• Quantum entanglement is one of the most important

resources in quantum information theory. It can be quantified
by the entropy of entanglement:

S
(
trA(ρAB)

)
, s.t S(ρ) = −tr(ρ log2 ρ).

• Maximally entangled state in dimension n:

ρmax = |ψ〉〈ψ|, where |ψ〉 =
1√
n

n∑
i=1

ei ⊗ ei ∈ `n2 ⊗ `n2

and
S(ρmax) = log2 n.
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Quantum non-locality

• If Alice and Bob perform a measurement in the corresponding
systems: {E a}Ka=1, {F b}Kb=1 we care about:(

P(a, b)
)K
a,b=1

=
(
tr(E a ⊗ F bρ)

)K
a,b=1

.

• Let’s assume that Alice and Bob have several measurements:

{E a
x }Ka=1, x = 1, · · · ,N (resp. {F b

y }Kb=1, y = 1, · · · ,N).

• The experimental data is then:

P =
(
P(a, b|x , y)

)N,K
x ,y ;a,b=1

=
(
tr(E a

x ⊗ F b
y ρ)
)N,K
x ,y ;a,b=1

 Q.

• We say that P is local (P ∈ L) if it is in the convex hull of
the elements of the form

P(a, b|x , y) = P1(a|x)P2(b|y) for every x , y , a, b; where

P1(a|x) ∈ {0, 1} and
∑
a

P1(a|x) = 1 for every x (and similar

for P2).
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How do we know if P0 is local?

• Let’s consider an arbitrary element: M =
(
Ma,b

x ,y

)N,K
x ,y ;a,b=1

and
take

C (M) = sup
P∈L
|〈M,P〉|, where 〈M,P〉 =

N,K∑
x ,y ,a,b=1

Ma,b
x ,yP(a, b|x , y).

• Now,

ν(P0) = sup
M

|〈M,P0〉|
C (M)

> 1?

• The fact that L  Q (Quantum non-locality- Bell violations)
has many applications: Cryptography, Random number
generators, Communication Complexity....

• Maths:

sup
Q∈Q

ν(Q) '
∥∥id : `N1 (`K∞)⊗ε `N1 (`K∞)→ `N1 (`K∞)⊗min `

N
1 (`K∞)

∥∥.
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Quantum non-locality of a bipartite state ρ

• Given ρ we can consider the set

Qρ =
{(

tr(E a
x⊗F b

y ρ)
)N,K
x ,y ;a,b=1

,N,K ∈ N, {E a
x }Ka=1, {F b

y }Ka=1

}
.

• We say that ρ is local if sup
P∈Qρ

ν(P) = 1 (useless states).

• Moreover, we have a measure of non-locality:

LVρ = sup
P∈Qρ

ν(P).

• Three questions:
1. Relation between amount of entanglement and amount of

non-locality for a given state ρ.
2. To understand the asymptotic behavior of LVρ for

n-dimensional states.
3. Super-activation of quantum non-locality:

LVρ = 1⇒ LV⊗kρ = 1?
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On the relation between entanglement and
non-locality

• If ρ is non-local, then ρ is entangled.

• N. Gisin For a given pure state ρ, ρ is local if and only if it is
separable.

• Werner, Barrett: There exist entangled states which are local!

• Junge, P. For every ε, δ > 0 there exists a state ρ such that

S(ρ) < ε and LVρ > δ.
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Quantifying non-locality

Theorem: Given a bipartite state ρ ∈ Sn
1 ⊗ Sn

1 ,

LVρ ≤ ‖ρ‖Sn
1⊗πSn

1
.

In particular, 1 ≤ LVρ ≤ n for every n dimensional state ρ.

Theorem (Buhrman et al.):

LV|ψn〉 �
n

(ln n)2
,

where |ψn〉 is the maximally entangled state in dimension n (note
that π(|ψn〉) = n).
Remark: Actually one can prove

LV|ϕ〉 � sup
k=1,··· ,n

πk(|ϕ〉〈ϕ|)
(ln k)2

.



Quantifying non-locality

Theorem: Given a bipartite state ρ ∈ Sn
1 ⊗ Sn

1 ,

LVρ ≤ ‖ρ‖Sn
1⊗πSn

1
.

In particular, 1 ≤ LVρ ≤ n for every n dimensional state ρ.
Theorem (Buhrman et al.):

LV|ψn〉 �
n

(ln n)2
,

where |ψn〉 is the maximally entangled state in dimension n (note
that π(|ψn〉) = n).

Remark: Actually one can prove

LV|ϕ〉 � sup
k=1,··· ,n

πk(|ϕ〉〈ϕ|)
(ln k)2

.



Quantifying non-locality

Theorem: Given a bipartite state ρ ∈ Sn
1 ⊗ Sn

1 ,

LVρ ≤ ‖ρ‖Sn
1⊗πSn

1
.

In particular, 1 ≤ LVρ ≤ n for every n dimensional state ρ.
Theorem (Buhrman et al.):

LV|ψn〉 �
n

(ln n)2
,

where |ψn〉 is the maximally entangled state in dimension n (note
that π(|ψn〉) = n).
Remark: Actually one can prove

LV|ϕ〉 � sup
k=1,··· ,n

πk(|ϕ〉〈ϕ|)
(ln k)2

.



Quantifying non-locality

Question:
LVρ ∼ ‖ρ‖Sn

1⊗πSn
1
?

Theorem:
LV|ψn〉 �

n√
ln n

.

So,
n

(ln n)2
� LV|ψn〉 �

n√
ln n

.

Corollary: There exists a p such that

|ηp〉 = p|ψn〉〈ψn|+ (1− p)
1Sn

1⊗Sn
1

n2

is local and
lim
k

LV⊗k
i=1ηp

=∞.
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What kinds of maths?

Theorem Given linear maps S : `n2 → `1(`∞) and T : `1(`∞)→ `n2
such that T ◦ S = id`n2 . We have that ‖T‖‖S‖ �

√
ln n.(

Furthermore this estimate is optimal even in the following

non-commutative case: There exist linear maps
j : Rn ∩ Cn −→ `1(`∞) and P : `1(`∞)→ Rn ∩ Cn such that

P ◦ j = id`n2 and ‖j‖cb‖P‖cb �
√

ln n
)

.

LV|ψn〉 ≤
∥∥id : `1(`∞)⊗ε `1(`∞)→ `1(`∞)⊗γ∗2n `1(`∞)

∥∥ ≤ n√
ln n

,

where,

‖x‖γ∗2n = sup
{∥∥(u ⊗ v)(x)

∥∥
`n2⊗π`n2

: ‖u, v : `1(`∞)→ `n2‖ ≤ 1
}
.
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Thank you very much!


