How non-local can a quantum state be?

Carlos Palazuelos
Instituto de Ciencias Matemáticas, Madrid

(based on previous works with M. Junge, D. Pérez-García,...)

Operator Spaces, Quantum Probability and Applications, Wuhan, June 2012

Quantum Mechanics: From theory to applications

- An isolated physical system is described by a density operator: $\rho: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ such that $\rho \geq 0$ and $\operatorname{tr}(\rho)=1$.
We denote $\rho \in S_{1}^{n}$.
In particular, we say that ρ is pure if $\rho=|\psi\rangle\langle\psi|$ for a certain unit vector $|\psi\rangle \in \ell_{2}^{n}$.

Quantum Mechanics: From theory to applications

- An isolated physical system is described by a density operator: $\rho: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ such that $\rho \geq 0$ and $\operatorname{tr}(\rho)=1$.
We denote $\rho \in S_{1}^{n}$.
In particular, we say that ρ is pure if $\rho=|\psi\rangle\langle\psi|$ for a certain unit vector $|\psi\rangle \in \ell_{2}^{n}$.
- A measurement with $a=1, \cdots, K$ possible results is given by a family of operators on $\ell_{2}^{n},\left\{E^{a}\right\}_{a=1}^{K}$, such that $\sum_{a=1}^{K} E^{a}=1$.
We have

$$
p(a)=\operatorname{tr}\left(E^{a} \rho\right) \text { probability of obtaining output } a
$$

Quantum Mechanics: From theory to applications

- An isolated physical system is described by a density operator: $\rho: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ such that $\rho \geq 0$ and $\operatorname{tr}(\rho)=1$.
We denote $\rho \in S_{1}^{n}$.
In particular, we say that ρ is pure if $\rho=|\psi\rangle\langle\psi|$ for a certain unit vector $|\psi\rangle \in \ell_{2}^{n}$.
- A measurement with $a=1, \cdots, K$ possible results is given by a family of operators on $\ell_{2}^{n},\left\{E^{a}\right\}_{a=1}^{K}$, such that $\sum_{a=1}^{K} E^{a}=1$.
We have

$$
p(a)=\operatorname{tr}\left(E^{a} \rho\right) \text { probability of obtaining output } a .
$$

Quantum Entanglement of a bipartite state

- To describe a physical system $A B$ formed by two physical subsystems A and B we take tensor products: $\ell_{2, A}^{n} \otimes_{2} \ell_{2, B}^{n}$. Then, $\rho_{A B} \in S_{1, A}^{n} \otimes S_{1, B}^{n}$.

Quantum Entanglement of a bipartite state

- To describe a physical system AB formed by two physical subsystems A and B we take tensor products: $\ell_{2, A}^{n} \otimes_{2} \ell_{2, B}^{n}$. Then, $\rho_{A B} \in S_{1, A}^{n} \otimes S_{1, B}^{n}$.
- We say that ρ is separable if it belongs to the convex hull of product states $\rho_{A} \otimes \rho_{B}$. Otherwise, we say that ρ is entangled.

Quantum Entanglement of a bipartite state

- To describe a physical system $A B$ formed by two physical subsystems A and B we take tensor products: $\ell_{2, A}^{n} \otimes_{2} \ell_{2, B}^{n}$. Then, $\rho_{A B} \in S_{1, A}^{n} \otimes S_{1, B}^{n}$.
- We say that ρ is separable if it belongs to the convex hull of product states $\rho_{A} \otimes \rho_{B}$. Otherwise, we say that ρ is entangled.
- Quantum entanglement is one of the most important resources in quantum information theory. It can be quantified by the entropy of entanglement:

$$
S\left(\operatorname{tr}_{A}\left(\rho_{A B}\right)\right), \text { s.t } S(\rho)=-\operatorname{tr}\left(\rho \log _{2} \rho\right)
$$

Quantum Entanglement of a bipartite state

- To describe a physical system $A B$ formed by two physical subsystems A and B we take tensor products: $\ell_{2, A}^{n} \otimes_{2} \ell_{2, B}^{n}$. Then, $\rho_{A B} \in S_{1, A}^{n} \otimes S_{1, B}^{n}$.
- We say that ρ is separable if it belongs to the convex hull of product states $\rho_{A} \otimes \rho_{B}$. Otherwise, we say that ρ is entangled.
- Quantum entanglement is one of the most important resources in quantum information theory. It can be quantified by the entropy of entanglement:

$$
S\left(\operatorname{tr}_{A}\left(\rho_{A B}\right)\right), \text { s.t } S(\rho)=-\operatorname{tr}\left(\rho \log _{2} \rho\right) .
$$

- Maximally entangled state in dimension n :

$$
\rho_{\max }=|\psi\rangle\langle\psi|, \quad \text { where }|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i} \otimes e_{i} \in \ell_{2}^{n} \otimes \ell_{2}^{n}
$$

and

$$
S\left(\rho_{\max }\right)=\log _{2} n .
$$

Quantum non-locality

- If Alice and Bob perform a measurement in the corresponding systems: $\left\{E^{a}\right\}_{a=1}^{K},\left\{F^{b}\right\}_{b=1}^{K}$ we care about:

$$
(P(a, b))_{a, b=1}^{K}=\left(\operatorname{tr}\left(E^{a} \otimes F^{b} \rho\right)\right)_{a, b=1}^{K} .
$$

Quantum non-locality

- If Alice and Bob perform a measurement in the corresponding systems: $\left\{E^{a}\right\}_{a=1}^{K},\left\{F^{b}\right\}_{b=1}^{K}$ we care about:

$$
(P(a, b))_{a, b=1}^{K}=\left(\operatorname{tr}\left(E^{a} \otimes F^{b} \rho\right)\right)_{a, b=1}^{K} .
$$

- Let's assume that Alice and Bob have several measurements:

$$
\left\{E_{x}^{a}\right\}_{a=1}^{K}, x=1, \cdots, N\left(\text { resp. } \quad\left\{F_{y}^{b}\right\}_{b=1}^{K}, y=1, \cdots, N\right) .
$$

Quantum non-locality

- If Alice and Bob perform a measurement in the corresponding systems: $\left\{E^{a}\right\}_{a=1}^{K},\left\{F^{b}\right\}_{b=1}^{K}$ we care about:

$$
(P(a, b))_{a, b=1}^{K}=\left(\operatorname{tr}\left(E^{a} \otimes F^{b} \rho\right)\right)_{a, b=1}^{K} .
$$

- Let's assume that Alice and Bob have several measurements:

$$
\left\{E_{x}^{a}\right\}_{a=1}^{K}, x=1, \cdots, N\left(\text { resp. } \quad\left\{F_{y}^{b}\right\}_{b=1}^{K}, y=1, \cdots, N\right)
$$

- The experimental data is then:

$$
P=(P(a, b \mid x, y))_{x, y ; a, b=1}^{N, K}=\left(\operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{b} \rho\right)\right)_{x, y ; a, b=1}^{N, K} \rightsquigarrow \mathcal{Q} .
$$

Quantum non-locality

- If Alice and Bob perform a measurement in the corresponding systems: $\left\{E^{a}\right\}_{a=1}^{K},\left\{F^{b}\right\}_{b=1}^{K}$ we care about:

$$
(P(a, b))_{a, b=1}^{K}=\left(\operatorname{tr}\left(E^{a} \otimes F^{b} \rho\right)\right)_{a, b=1}^{K} .
$$

- Let's assume that Alice and Bob have several measurements:

$$
\left\{E_{x}^{a}\right\}_{a=1}^{K}, x=1, \cdots, N\left(\text { resp. } \quad\left\{F_{y}^{b}\right\}_{b=1}^{K}, y=1, \cdots, N\right)
$$

- The experimental data is then:

$$
P=(P(a, b \mid x, y))_{x, y ; a, b=1}^{N, K}=\left(\operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{b} \rho\right)\right)_{x, y ; a, b=1}^{N, K} \rightsquigarrow \mathcal{Q} .
$$

- We say that P is local $(P \in \mathcal{L})$ if it is in the convex hull of the elements of the form

$$
P(a, b \mid x, y)=P_{1}(a \mid x) P_{2}(b \mid y) \text { for every } x, y, a, b ; \text { where }
$$

$$
P_{1}(a \mid x) \in\{0,1\} \text { and } \sum_{a} P_{1}(a \mid x)=1 \text { for every } x \text { (and similar }
$$ for $\left.P_{2}\right)$.

How do we know if P_{0} is local?

- Let's consider an arbitrary element: $M=\left(M_{x, y}^{a, b}\right)_{x, y ; a, b=1}^{N, K}$ and take

$$
C(M)=\sup _{P \in \mathcal{L}}|\langle M, P\rangle|, \text { where }\langle M, P\rangle=\sum_{x, y, a, b=1}^{N, K} M_{x, y}^{a, b} P(a, b \mid x, y) \text {. }
$$

How do we know if P_{0} is local?

- Let's consider an arbitrary element: $M=\left(M_{x, y}^{a, b}\right)_{x, y ; a, b=1}^{N, K}$ and take

$$
C(M)=\sup _{P \in \mathcal{L}}|\langle M, P\rangle|, \text { where }\langle M, P\rangle=\sum_{x, y, a, b=1}^{N, K} M_{x, y}^{a, b} P(a, b \mid x, y) \text {. }
$$

- Now,

$$
\nu\left(P_{0}\right)=\sup _{M} \frac{\left|\left\langle M, P_{0}\right\rangle\right|}{C(M)}>1 ?
$$

How do we know if P_{0} is local?

- Let's consider an arbitrary element: $M=\left(M_{x, y}^{a, b}\right)_{x, y ; a, b=1}^{N, K}$ and take

$$
C(M)=\sup _{P \in \mathcal{L}}|\langle M, P\rangle|, \quad \text { where }\langle M, P\rangle=\sum_{x, y, a, b=1}^{N, K} M_{x, y}^{a, b} P(a, b \mid x, y) .
$$

- Now,

$$
\nu\left(P_{0}\right)=\sup _{M} \frac{\left|\left\langle M, P_{0}\right\rangle\right|}{C(M)}>1 ?
$$

- The fact that $\mathcal{L} \nsubseteq \mathcal{Q}$ (Quantum non-locality- Bell violations) has many applications: Cryptography, Random number generators, Communication Complexity....

How do we know if P_{0} is local?

- Let's consider an arbitrary element: $M=\left(M_{x, y}^{a, b}\right)_{x, y ; a, b=1}^{N, K}$ and take

$$
C(M)=\sup _{P \in \mathcal{L}}|\langle M, P\rangle|, \quad \text { where }\langle M, P\rangle=\sum_{x, y, a, b=1}^{N, K} M_{x, y}^{a, b} P(a, b \mid x, y) .
$$

- Now,

$$
\nu\left(P_{0}\right)=\sup _{M} \frac{\left|\left\langle M, P_{0}\right\rangle\right|}{C(M)}>1 ?
$$

- The fact that $\mathcal{L} \nsubseteq \mathcal{Q}$ (Quantum non-locality- Bell violations) has many applications: Cryptography, Random number generators, Communication Complexity....
- Maths:

$$
\sup _{Q \in \mathcal{Q}} \nu(Q) \simeq\left\|i d: \ell_{1}^{N}\left(\ell_{\infty}^{K}\right) \otimes_{\epsilon} \ell_{1}^{N}\left(\ell_{\infty}^{K}\right) \rightarrow \ell_{1}^{N}\left(\ell_{\infty}^{K}\right) \otimes_{\min } \ell_{1}^{N}\left(\ell_{\infty}^{K}\right)\right\| .
$$

Quantum non-locality of a bipartite state ρ

- Given ρ we can consider the set

$$
\mathcal{Q}_{\rho}=\left\{\left(\operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{b} \rho\right)\right)_{x, y ; a, b=1}^{N, K}, N, K \in \mathbb{N},\left\{E_{x}^{a}\right\}_{a=1}^{K},\left\{F_{y}^{b}\right\}_{a=1}^{K}\right\} .
$$

Quantum non-locality of a bipartite state ρ

- Given ρ we can consider the set

$$
\mathcal{Q}_{\rho}=\left\{\left(\operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{b} \rho\right)\right)_{x, y ; a, b=1}^{N, K}, N, K \in \mathbb{N},\left\{E_{x}^{a}\right\}_{a=1}^{K},\left\{F_{y}^{b}\right\}_{a=1}^{K}\right\} .
$$

- We say that ρ is local if $\sup _{P \in \mathcal{Q}_{\rho}} \nu(P)=1$ (useless states).

Quantum non-locality of a bipartite state ρ

- Given ρ we can consider the set

$$
\mathcal{Q}_{\rho}=\left\{\left(\operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{b} \rho\right)\right)_{x, y ; a, b=1}^{N, K}, N, K \in \mathbb{N},\left\{E_{x}^{a}\right\}_{a=1}^{K},\left\{F_{y}^{b}\right\}_{a=1}^{K}\right\} .
$$

- We say that ρ is local if $\sup _{P \in \mathcal{Q}_{\rho}} \nu(P)=1$ (useless states). $P \in \mathcal{Q}_{\rho}$
- Moreover, we have a measure of non-locality:

$$
L V_{\rho}=\sup _{P \in \mathcal{Q}_{\rho}} \nu(P)
$$

Quantum non-locality of a bipartite state ρ

- Given ρ we can consider the set
$\mathcal{Q}_{\rho}=\left\{\left(\operatorname{tr}\left(E_{x}^{a} \otimes F_{y}^{b} \rho\right)\right)_{x, y ; a, b=1}^{N, K}, N, K \in \mathbb{N},\left\{E_{x}^{a}\right\}_{a=1}^{K},\left\{F_{y}^{b}\right\}_{a=1}^{K}\right\}$.
- We say that ρ is local if sup $\nu(P)=1$ (useless states). $P \in \mathcal{Q}_{\rho}$
- Moreover, we have a measure of non-locality:

$$
L V_{\rho}=\sup _{P \in \mathcal{Q}_{\rho}} \nu(P)
$$

- Three questions:

1. Relation between amount of entanglement and amount of non-locality for a given state ρ.
2. To understand the asymptotic behavior of $L V_{\rho}$ for n-dimensional states.
3. Super-activation of quantum non-locality:

$$
L V_{\rho}=1 \Rightarrow L V_{\otimes_{k} \rho}=1 ?
$$

On the relation between entanglement and non-locality

- If ρ is non-local, then ρ is entangled.

On the relation between entanglement and non-locality

- If ρ is non-local, then ρ is entangled.
- N. Gisin For a given pure state ρ, ρ is local if and only if it is separable.

On the relation between entanglement and non-locality

- If ρ is non-local, then ρ is entangled.
- N. Gisin For a given pure state ρ, ρ is local if and only if it is separable.
- Werner, Barrett: There exist entangled states which are local!

On the relation between entanglement and non-locality

- If ρ is non-local, then ρ is entangled.
- N. Gisin For a given pure state ρ, ρ is local if and only if it is separable.
- Werner, Barrett: There exist entangled states which are local!
- Junge, P. For every $\epsilon, \delta>0$ there exists a state ρ such that

$$
S(\rho)<\epsilon \text { and } L V_{\rho}>\delta
$$

Quantifying non-locality

Theorem: Given a bipartite state $\rho \in S_{1}^{n} \otimes S_{1}^{n}$,

$$
L V_{\rho} \leq\|\rho\|_{S_{1}^{n} \otimes \pi S_{1}^{n}}
$$

In particular, $1 \leq L V_{\rho} \leq n$ for every n dimensional state ρ.

Quantifying non-locality

Theorem: Given a bipartite state $\rho \in S_{1}^{n} \otimes S_{1}^{n}$,

$$
L V_{\rho} \leq\|\rho\|_{S_{1}^{n} \otimes \pi S_{1}^{n}} .
$$

In particular, $1 \leq L V_{\rho} \leq n$ for every n dimensional state ρ. Theorem (Buhrman et al.):

$$
L V_{\left|\psi_{n}\right\rangle} \succeq \frac{n}{(\ln n)^{2}}
$$

where $\left|\psi_{n}\right\rangle$ is the maximally entangled state in dimension n (note that $\pi\left(\left|\psi_{n}\right\rangle\right)=n$.

Quantifying non-locality

Theorem: Given a bipartite state $\rho \in S_{1}^{n} \otimes S_{1}^{n}$,

$$
L V_{\rho} \leq\|\rho\|_{S_{1}^{n} \otimes \pi S_{1}^{n}} .
$$

In particular, $1 \leq L V_{\rho} \leq n$ for every n dimensional state ρ. Theorem (Buhrman et al.):

$$
L V_{\left|\psi_{n}\right\rangle} \succeq \frac{n}{(\ln n)^{2}}
$$

where $\left|\psi_{n}\right\rangle$ is the maximally entangled state in dimension n (note that $\left.\pi\left(\left|\psi_{n}\right\rangle\right)=n\right)$.
Remark: Actually one can prove

$$
L V_{|\varphi\rangle} \succeq \sup _{k=1, \cdots, n} \frac{\pi_{k}(|\varphi\rangle\langle\varphi|)}{(\ln k)^{2}}
$$

Quantifying non-locality

Question:

$$
L V_{\rho} \sim\|\rho\|_{S_{1}^{n} \otimes \pi S_{1}^{n}} ?
$$

Quantifying non-locality

Question:

$$
L V_{\rho} \sim\|\rho\|_{S_{1}^{n} \otimes \pi S_{1}^{n}} ?
$$

Theorem:

$$
L V_{\left|\psi_{n}\right\rangle} \preceq \frac{n}{\sqrt{\ln n}} .
$$

Quantifying non-locality

Question:

$$
L V_{\rho} \sim\|\rho\|_{S_{1}^{n} \otimes \pi S_{1}^{n}} ?
$$

Theorem:

$$
L V_{\left|\psi_{n}\right\rangle} \preceq \frac{n}{\sqrt{\ln n}} .
$$

So,

$$
\frac{n}{(\ln n)^{2}} \preceq L V_{\left|\psi_{n}\right\rangle} \preceq \frac{n}{\sqrt{\ln n}} .
$$

Quantifying non-locality

Question:

$$
L V_{\rho} \sim\|\rho\|_{S_{1}^{n} \otimes \pi S_{1}^{n}} ?
$$

Theorem:

$$
L V_{\left|\psi_{n}\right\rangle} \preceq \frac{n}{\sqrt{\ln n}} .
$$

So,

$$
\frac{n}{(\ln n)^{2}} \preceq L V_{\left|\psi_{n}\right\rangle} \preceq \frac{n}{\sqrt{\ln n}} .
$$

Corollary: There exists a p such that

$$
\left|\eta_{p}\right\rangle=p\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|+(1-p) \frac{1_{S_{1}^{n} \otimes S_{1}^{n}}}{n^{2}}
$$

is local and

$$
\lim _{k} L V_{\otimes_{i=1}^{k} \eta_{p}}=\infty
$$

What kinds of maths?

Theorem Given linear maps $S: \ell_{2}^{n} \rightarrow \ell_{1}\left(\ell_{\infty}\right)$ and $T: \ell_{1}\left(\ell_{\infty}\right) \rightarrow \ell_{2}^{n}$ such that $T \circ S=i d_{\ell_{2}^{n}}$. We have that $\|T\|\|S\| \succeq \sqrt{\ln n}$.
(Furthermore this estimate is optimal even in the following non-commutative case: There exist linear maps
$j: R_{n} \cap C_{n} \longrightarrow \ell_{1}\left(\ell_{\infty}\right)$ and $P: \ell_{1}\left(\ell_{\infty}\right) \rightarrow R_{n} \cap C_{n}$ such that $P \circ j=i d_{\ell_{2}^{n}}$ and $\left.\|j\|_{c b}\|P\|_{c b} \preceq \sqrt{\ln n}\right)$.

What kinds of maths?

Theorem Given linear maps $S: \ell_{2}^{n} \rightarrow \ell_{1}\left(\ell_{\infty}\right)$ and $T: \ell_{1}\left(\ell_{\infty}\right) \rightarrow \ell_{2}^{n}$ such that $T \circ S=i d_{\ell_{2}}$. We have that $\|T\|\|S\| \succeq \sqrt{\ln n}$.
(Furthermore this estimate is optimal even in the following non-commutative case: There exist linear maps
$j: R_{n} \cap C_{n} \longrightarrow \ell_{1}\left(\ell_{\infty}\right)$ and $P: \ell_{1}\left(\ell_{\infty}\right) \rightarrow R_{n} \cap C_{n}$ such that $P \circ j=i d_{\ell_{2}^{n}}$ and $\left.\|j\|_{c b}\|P\|_{c b} \preceq \sqrt{\ln n}\right)$.

$$
L V_{\left|\psi_{n}\right\rangle} \leq\left\|i d: \ell_{1}\left(\ell_{\infty}\right) \otimes_{\epsilon} \ell_{1}\left(\ell_{\infty}\right) \rightarrow \ell_{1}\left(\ell_{\infty}\right) \otimes_{\gamma_{2 n}^{*}} \ell_{1}\left(\ell_{\infty}\right)\right\| \leq \frac{n}{\sqrt{\ln n}},
$$

where,

$$
\|x\|_{\gamma_{n}^{*}}=\sup \left\{\|(u \otimes v)(x)\|_{\ell_{2}^{n} \otimes \pi \ell_{2}^{n}}:\left\|u, v: \ell_{1}\left(\ell_{\infty}\right) \rightarrow \ell_{2}^{n}\right\| \leq 1\right\} .
$$

Thank you very much!

