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To describe a physical system AB formed by two physical
subsystems A and B we take tensor products: £3 4 ®2 {3 g.
Then, pag € SﬂA &K Sf,B'

We say that p is separable if it belongs to the convex hull of
product states pa ® pg. Otherwise, we say that p is entangled.
Quantum entanglement is one of the most important
resources in quantum information theory. It can be quantified
by the entropy of entanglement:

S(tra(pag)), st S(p) = —tr(plog, p).

Maximally entangled state in dimension n:

Pmax = [¥){¥|, where |¢) = \f Z eiRe €lyly

and
S(pmax) = |og2 n.
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If Alice and Bob perform a measurement in the corresponding
systems: {E2}X . {FP}K | we care about:

K K
(P(a, b))a,bzl = (tr(E°® Fbp))a,bzl'
Let's assume that Alice and Bob have several measurements:
{Ej}f::lax =1,---,N (resp. {F)?}g:lvy =1---,N).

The experimental data is then:
P = (P(a,blx.y))

We say that P is local (P € L) if it is in the convex hull of
the elements of the form

N.K )

= (tr(Ej ® Fybp)) ~ Q.

x,y;a,b=1 x,y;a,b=1

P(a, blx,y) = Pi(a|x)Pa(bly) for every x,y,a,b; where
Pi(alx) € {0,1} and Z Pi(a|x) =1 for every x (and similar
a
for P2)
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The fact that £ & Q (Quantum non-locality- Bell violations)
has many applications: Cryptography, Random number
generators, Communication Complexity....

Maths:

SU%V(Q) ~ ||id : 67 (¢50) @ 6 (€5)) — 04 (6) ©min 17 (€50) |-
S
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Moreover, we have a measure of non-locality:

LV, = sup v(P).
PeQ,

Three questions:
1. Relation between amount of entanglement and amount of
non-locality for a given state p.
2. To understand the asymptotic behavior of LV, for
n-dimensional states.
3. Super-activation of quantum non-locality:
LV,=1=LVg,,=17
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If p is non-local, then p is entangled.

For a given pure state p, p is local if and only if it is
separable.

: There exist entangled states which are local!

For every €, > 0 there exists a state p such that

S(p) <€ and LV, > .
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In particular, 1 < LV, < n for every n dimensional state p.
Theorem ( ):

(Inn)2’

LViy,y =

where |1,,) is the maximally entangled state in dimension n (note

that 7(|1,)) = n).

Remark: Actually one can prove

LV, = k(%) (1)
o) = .
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Quantifying non-locality

Question:
LV, ~ Iplispersy?
Theorem:
LV, \ <
[Yn) = m
So,

n n
—Q0 3LV 3
(Inn)2 — o) = Vinn

Corollary: There exists a p such that

Lsresn

o) = Plton) (Wl + (1 = )05

is local and

I|m LV®5< np = OO
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(Furthermore this estimate is optimal even in the following

non-commutative case: There exist linear maps
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n

Vi) < [[id : £1(foo) @c £1(loo) = lr(foo) @15 £1(loo)|| <

)

S

In

where,

Nu, v li(le) — 65| < 1}.

Ix[lys, = S“P{H(“ V) g, e



Thank you very much!



