How non-local can a quantum state be?

Carlos Palazuelos

Instituto de Ciencias Matemáticas, Madrid

(based on previous works with M. Junge, D. Pérez-García,...)

Operator Spaces, Quantum Probability and Applications, Wuhan, June 2012 Quantum Mechanics: From theory to applications

• An isolated physical system is described by a density operator: $\rho: \ell_2^n \to \ell_2^n$ such that $\rho \ge 0$ and $tr(\rho) = 1$. We denote $\rho \in S_1^n$.

In particular, we say that ρ is pure if $\rho = |\psi\rangle\langle\psi|$ for a certain unit vector $|\psi\rangle \in \ell_2^n$.

Quantum Mechanics: From theory to applications

• An isolated physical system is described by a density operator: $\rho: \ell_2^n \to \ell_2^n$ such that $\rho \ge 0$ and $tr(\rho) = 1$. We denote $\rho \in S_1^n$.

In particular, we say that ρ is pure if $\rho = |\psi\rangle\langle\psi|$ for a certain unit vector $|\psi\rangle \in \ell_2^n$.

• A measurement with $a = 1, \dots, K$ possible results is given by a family of operators on ℓ_2^n , $\{E^a\}_{a=1}^K$, such that $\sum_{a=1}^K E^a = 1$. We have

 $p(a) = tr(E^a \rho)$ probability of obtaining output *a*.

Quantum Mechanics: From theory to applications

• An isolated physical system is described by a density operator: $\rho: \ell_2^n \to \ell_2^n$ such that $\rho \ge 0$ and $tr(\rho) = 1$. We denote $\rho \in S_1^n$.

In particular, we say that ρ is pure if $\rho = |\psi\rangle\langle\psi|$ for a certain unit vector $|\psi\rangle \in \ell_2^n$.

• A measurement with $a = 1, \dots, K$ possible results is given by a family of operators on ℓ_2^n , $\{E^a\}_{a=1}^K$, such that $\sum_{a=1}^K E^a = 1$. We have

 $p(a) = tr(E^a \rho)$ probability of obtaining output a.

IDEA: THEORY ++++ EXPERIMENTAL DATA

• To describe a physical system AB formed by two physical subsystems A and B we take tensor products: $\ell_{2,A}^n \otimes_2 \ell_{2,B}^n$. Then, $\rho_{AB} \in S_{1,A}^n \otimes S_{1,B}^n$.

- To describe a physical system AB formed by two physical subsystems A and B we take tensor products: $\ell_{2,A}^n \otimes_2 \ell_{2,B}^n$. Then, $\rho_{AB} \in S_{1,A}^n \otimes S_{1,B}^n$.
- We say that ρ is separable if it belongs to the convex hull of product states ρ_A ⊗ ρ_B. Otherwise, we say that ρ is entangled.

- To describe a physical system AB formed by two physical subsystems A and B we take tensor products: $\ell_{2,A}^n \otimes_2 \ell_{2,B}^n$. Then, $\rho_{AB} \in S_{1,A}^n \otimes S_{1,B}^n$.
- We say that ρ is separable if it belongs to the convex hull of product states ρ_A ⊗ ρ_B. Otherwise, we say that ρ is entangled.
- Quantum entanglement is one of the most important resources in quantum information theory. It can be quantified by the entropy of entanglement:

$$S(tr_A(\rho_{AB}))$$
, s.t $S(\rho) = -tr(\rho \log_2 \rho)$.

- To describe a physical system AB formed by two physical subsystems A and B we take tensor products: $\ell_{2,A}^n \otimes_2 \ell_{2,B}^n$. Then, $\rho_{AB} \in S_{1,A}^n \otimes S_{1,B}^n$.
- We say that ρ is separable if it belongs to the convex hull of product states ρ_A ⊗ ρ_B. Otherwise, we say that ρ is entangled.
- Quantum entanglement is one of the most important resources in quantum information theory. It can be quantified by the entropy of entanglement:

$$S(tr_A(\rho_{AB}))$$
, s.t $S(\rho) = -tr(\rho \log_2 \rho)$.

• Maximally entangled state in dimension *n*:

$$\rho_{max} = |\psi\rangle\langle\psi|, \text{ where } |\psi\rangle = \frac{1}{\sqrt{n}}\sum_{i=1}^{n}e_{i}\otimes e_{i}\in \ell_{2}^{n}\otimes \ell_{2}^{n}$$

and

$$S(\rho_{max}) = \log_2 n.$$

If Alice and Bob perform a measurement in the corresponding systems: {E^a}^K_{a=1}, {F^b}^K_{b=1} we care about:

$$(P(a,b))_{a,b=1}^{K} = (tr(E^{a} \otimes F^{b}\rho))_{a,b=1}^{K}.$$

 If Alice and Bob perform a measurement in the corresponding systems: {E^a}^K_{a=1}, {F^b}^K_{b=1} we care about:

$$\left(P(a,b)\right)_{a,b=1}^{K} = \left(tr(E^{a} \otimes F^{b}\rho)\right)_{a,b=1}^{K}$$

• Let's assume that Alice and Bob have several measurements:

$$\{E_x^a\}_{a=1}^K, x = 1, \cdots, N \text{ (resp. } \{F_y^b\}_{b=1}^K, y = 1, \cdots, N \text{).}$$

 If Alice and Bob perform a measurement in the corresponding systems: {E^a}^K_{a=1}, {F^b}^K_{b=1} we care about:

$$(P(a,b))_{a,b=1}^{K} = (tr(E^{a} \otimes F^{b}\rho))_{a,b=1}^{K}$$

- Let's assume that Alice and Bob have several measurements: $\{E_x^a\}_{a=1}^K, x = 1, \dots, N$ (resp. $\{F_y^b\}_{b=1}^K, y = 1, \dots, N$).
- The experimental data is then:

$$P = \left(P(a, b|x, y)\right)_{x, y; a, b=1}^{N, K} = \left(tr(E_x^a \otimes F_y^b \rho)\right)_{x, y; a, b=1}^{N, K} \rightsquigarrow \mathcal{Q}.$$

 If Alice and Bob perform a measurement in the corresponding systems: {E^a}^K_{a=1}, {F^b}^K_{b=1} we care about:

$$(P(a,b))_{a,b=1}^{K} = (tr(E^{a} \otimes F^{b}\rho))_{a,b=1}^{K}.$$

- Let's assume that Alice and Bob have several measurements: $\{E_x^a\}_{a=1}^K, x = 1, \cdots, N \text{ (resp. } \{F_y^b\}_{b=1}^K, y = 1, \cdots, N \text{).}$
- The experimental data is then:

$$P = \left(P(a, b|x, y)\right)_{x, y; a, b=1}^{N, K} = \left(tr(E_x^a \otimes F_y^b \rho)\right)_{x, y; a, b=1}^{N, K} \rightsquigarrow \mathcal{Q}.$$

 We say that P is local (P ∈ L) if it is in the convex hull of the elements of the form

 $P(a, b|x, y) = P_1(a|x)P_2(b|y)$ for every x, y, a, b; where $P_1(a|x) \in \{0, 1\}$ and $\sum_a P_1(a|x) = 1$ for every x (and similar for P_2).

• Let's consider an arbitrary element: $M = (M_{x,y}^{a,b})_{x,y;a,b=1}^{N,K}$ and take

$$C(M) = \sup_{P \in \mathcal{L}} |\langle M, P
angle|, ext{ where } \langle M, P
angle = \sum_{x,y,a,b=1}^{N,K} M_{x,y}^{a,b} P(a,b|x,y).$$

• Let's consider an arbitrary element: $M = (M_{x,y}^{a,b})_{x,y;a,b=1}^{N,K}$ and take

$$C(M) = \sup_{P \in \mathcal{L}} |\langle M, P \rangle|, \text{ where } \langle M, P \rangle = \sum_{x,y,a,b=1}^{N,K} M_{x,y}^{a,b} P(a,b|x,y).$$

Now,

$$u(P_0) = \sup_M \frac{|\langle M, P_0 \rangle|}{C(M)} > 1?$$

• Let's consider an arbitrary element: $M = (M_{x,y}^{a,b})_{x,y;a,b=1}^{N,K}$ and take

$$C(M) = \sup_{P \in \mathcal{L}} |\langle M, P \rangle|, \text{ where } \langle M, P \rangle = \sum_{x,y,a,b=1}^{N,K} M_{x,y}^{a,b} P(a,b|x,y).$$

Now,

$$u(P_0) = \sup_M rac{|\langle M, P_0
angle|}{C(M)} > 1?$$

 The fact that L ⊊ Q (Quantum non-locality- Bell violations) has many applications: Cryptography, Random number generators, Communication Complexity....

• Let's consider an arbitrary element: $M = (M_{x,y}^{a,b})_{x,y;a,b=1}^{N,K}$ and take

$$C(M) = \sup_{P \in \mathcal{L}} |\langle M, P \rangle|, \text{ where } \langle M, P \rangle = \sum_{x,y,a,b=1}^{N,K} M_{x,y}^{a,b} P(a,b|x,y).$$

Now,

$$u(P_0) = \sup_M rac{|\langle M, P_0
angle|}{C(M)} > 1?$$

- The fact that L ⊊ Q (Quantum non-locality- Bell violations) has many applications: Cryptography, Random number generators, Communication Complexity....
- Maths:

$$\sup_{Q\in\mathcal{Q}}\nu(Q)\simeq \left\| \mathsf{id}:\ell_1^{\mathsf{N}}(\ell_\infty^{\mathsf{K}})\otimes_\epsilon \ell_1^{\mathsf{N}}(\ell_\infty^{\mathsf{K}})\to \ell_1^{\mathsf{N}}(\ell_\infty^{\mathsf{K}})\otimes_{\min}\ell_1^{\mathsf{N}}(\ell_\infty^{\mathsf{K}})\right\|.$$

• Given ρ we can consider the set

$$\mathcal{Q}_{\rho} = \left\{ \left(tr(E_x^a \otimes F_y^b \rho) \right)_{x,y;a,b=1}^{N,K}, N, K \in \mathbb{N}, \{E_x^a\}_{a=1}^K, \{F_y^b\}_{a=1}^K \right\}.$$

• Given ρ we can consider the set

$$\mathcal{Q}_{\rho} = \left\{ \left(tr(E_x^a \otimes F_y^b \rho) \right)_{x,y;a,b=1}^{N,K}, N, K \in \mathbb{N}, \{E_x^a\}_{a=1}^K, \{F_y^b\}_{a=1}^K \right\}.$$

• We say that ρ is local if $\sup_{P \in Q_{\rho}} \nu(P) = 1$ (useless states).

• Given ρ we can consider the set

$$\mathcal{Q}_{\rho} = \left\{ \left(tr(E_x^a \otimes F_y^b \rho) \right)_{x,y;a,b=1}^{N,K}, N, K \in \mathbb{N}, \{E_x^a\}_{a=1}^K, \{F_y^b\}_{a=1}^K \right\}.$$

- We say that ρ is local if $\sup_{P \in Q_{\rho}} \nu(P) = 1$ (useless states).
- Moreover, we have a measure of non-locality:

$$LV_{
ho} = \sup_{P \in \mathcal{Q}_{
ho}} \nu(P).$$

• Given ρ we can consider the set

$$\mathcal{Q}_{\rho} = \left\{ \left(tr(E_x^a \otimes F_y^b \rho) \right)_{x,y;a,b=1}^{N,K}, N, K \in \mathbb{N}, \{E_x^a\}_{a=1}^K, \{F_y^b\}_{a=1}^K \right\}.$$

- We say that ρ is local if $\sup_{P \in Q_{\rho}} \nu(P) = 1$ (useless states).
- Moreover, we have a measure of non-locality:

$$LV_{\rho} = \sup_{P \in \mathcal{Q}_{\rho}} \nu(P).$$

- Three questions:
 - 1. Relation between amount of entanglement and amount of non-locality for a given state ρ .
 - 2. To understand the asymptotic behavior of LV_{ρ} for *n*-dimensional states.
 - 3. Super-activation of quantum non-locality: $LV_{\rho} = 1 \Rightarrow LV_{\otimes_k \rho} = 1$?

• If ρ is non-local, then ρ is entangled.

- If ρ is non-local, then ρ is entangled.
- N. Gisin For a given pure state ρ , ρ is local if and only if it is separable.

- If ρ is non-local, then ρ is entangled.
- N. Gisin For a given pure state ρ , ρ is local if and only if it is separable.
- Werner, Barrett: There exist entangled states which are local!

- If ρ is non-local, then ρ is entangled.
- N. Gisin For a given pure state ρ , ρ is local if and only if it is separable.
- Werner, Barrett: There exist entangled states which are local!
- Junge, P. For every $\epsilon, \delta > 0$ there exists a state ρ such that

 $S(\rho) < \epsilon$ and $LV_{\rho} > \delta$.

Theorem: Given a bipartite state $\rho \in S_1^n \otimes S_1^n$,

 $LV_{\rho} \leq \|\rho\|_{S_1^n \otimes \pi S_1^n}.$

In particular, $1 \leq LV_{\rho} \leq n$ for every *n* dimensional state ρ .

Theorem: Given a bipartite state $\rho \in S_1^n \otimes S_1^n$,

 $LV_{\rho} \leq \|\rho\|_{S_1^n \otimes \pi S_1^n}.$

In particular, $1 \le LV_{\rho} \le n$ for every *n* dimensional state ρ . Theorem (Buhrman et al.):

$$LV_{|\psi_n\rangle} \succeq \frac{n}{(\ln n)^2},$$

where $|\psi_n\rangle$ is the maximally entangled state in dimension *n* (note that $\pi(|\psi_n\rangle) = n$).

Theorem: Given a bipartite state $\rho \in S_1^n \otimes S_1^n$,

 $LV_{\rho} \leq \|\rho\|_{S_1^n \otimes \pi S_1^n}.$

In particular, $1 \le LV_{\rho} \le n$ for every *n* dimensional state ρ . Theorem (Buhrman et al.):

$$LV_{|\psi_n\rangle} \succeq \frac{n}{(\ln n)^2},$$

where $|\psi_n\rangle$ is the maximally entangled state in dimension *n* (note that $\pi(|\psi_n\rangle) = n$). Remark: Actually one can prove

$$\mathcal{L}V_{|arphi
angle} \succeq \sup_{k=1,\cdots,n} rac{\pi_k(|arphi
angle\langlearphi|)}{(\ln k)^2}.$$

Question:

 $LV_{\rho} \sim \|\rho\|_{S_1^n \otimes \pi S_1^n}$?

Question:

$$LV_{\rho} \sim \|\rho\|_{S_1^n \otimes \pi S_1^n}$$
?

Theorem:

$$LV_{|\psi_n\rangle} \preceq \frac{n}{\sqrt{\ln n}}.$$

Question:

$$LV_{\rho} \sim \|\rho\|_{S_1^n \otimes \pi S_1^n}$$
?

Theorem:

$$LV_{|\psi_n
angle} \preceq \frac{n}{\sqrt{\ln n}}.$$

So,

$$\frac{n}{(\ln n)^2} \preceq LV_{|\psi_n\rangle} \preceq \frac{n}{\sqrt{\ln n}}.$$

Corollary: There exists a p such that

$$|\eta_{p}
angle=p|\psi_{n}
angle\langle\psi_{n}|+(1-p)rac{1_{S_{1}^{n}\otimes S_{1}^{n}}}{n^{2}}$$

is local and

$$\lim_{k} LV_{\otimes_{i=1}^{k} \eta_{p}} = \infty.$$

What kinds of maths?

Theorem Given linear maps $S : \ell_2^n \to \ell_1(\ell_\infty)$ and $T : \ell_1(\ell_\infty) \to \ell_2^n$ such that $T \circ S = id_{\ell_2^n}$. We have that $||T|| ||S|| \succeq \sqrt{\ln n}$.

(Furthermore this estimate is optimal even in the following non-commutative case: There exist linear maps $j: R_n \cap C_n \longrightarrow \ell_1(\ell_\infty)$ and $P: \ell_1(\ell_\infty) \to R_n \cap C_n$ such that $P \circ j = id_{\ell_2^n}$ and $\|j\|_{cb} \|P\|_{cb} \preceq \sqrt{\ln n}$).

What kinds of maths?

Theorem Given linear maps $S : \ell_2^n \to \ell_1(\ell_\infty)$ and $T : \ell_1(\ell_\infty) \to \ell_2^n$ such that $T \circ S = id_{\ell_2^n}$. We have that $\|T\| \|S\| \succeq \sqrt{\ln n}$.

(Furthermore this estimate is optimal even in the following non-commutative case: There exist linear maps $j: R_n \cap C_n \longrightarrow \ell_1(\ell_\infty)$ and $P: \ell_1(\ell_\infty) \to R_n \cap C_n$ such that $P \circ j = id_{\ell_2^n}$ and $\|j\|_{cb} \|P\|_{cb} \preceq \sqrt{\ln n}$).

$$LV_{|\psi_n
angle} \leq \left\| \mathsf{id} : \ell_1(\ell_\infty) \otimes_\epsilon \ell_1(\ell_\infty) o \ell_1(\ell_\infty) \otimes_{\gamma_{2_n}^*} \ell_1(\ell_\infty) \right\| \leq rac{n}{\sqrt{\ln n}},$$

where,

$$\|x\|_{\gamma_{2_n}^*} = \sup \Big\{ \|(u \otimes v)(x)\|_{\ell_2^n \otimes \pi \ell_2^n} : \|u, v : \ell_1(\ell_\infty) \to \ell_2^n \| \le 1 \Big\}.$$

Thank you very much!