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• Types I, II, III von-Neumann algebras (Murray-von Neumann):
R = RI ⊕RII ⊕RIII
v.s. Types I, II, III C∗-algebras (Cuntz-Pedersen)
• Murray-von Neumann type classification for C∗-algebras
using open projections?
• {open projections} = {hereditary C∗-subalgebras} and
{central open projections} = {ideals}
• (Lin) There exists open projections p,q of a C∗-algebra A
such that p and q are Murray-von Neumann equivalent but their
corresponding hereditary C∗-algebras are non-isomorphic.
•Want an equivalence relation on open projections that is
compatible with the Murray-von Neumann equivalence and
respects the corresponding hereditary C∗-subalgebras.
No such equivalence relation was found except the one by
Peligrad and Zsidó (which we only discovered in a later stage of
this work).
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• A is a C∗-algebra and OP(A) ⊆ Proj(A∗∗) is the set of all open
projections of A.
• ∀p ∈ Proj(A∗∗), we set herA(p) := pA∗∗p ∩ A. We may
sometimes write her(p) if A is understood.
• Let p,q ∈ Proj(A∗∗). If ∃v ∈ A∗∗ s.t. p = vv∗, q = v∗v ,
v∗ herA(p)v = herA(q) and v herA(q)v∗ = herA(p), we say that
p,q are spatially equivalent and denote p ∼sp q.
• If B ⊆ A is a hereditary C∗-subalgebra, p,q ∈ Proj(B∗∗), then
herA(p) = herB(p) and p ∼sp q as elements in Proj(B∗∗) if and
only if p ∼sp q as elements in Proj(A∗∗).
• If p ∼sp q and p ∈ OP(A), then q ∈ OP(A).

Ng A Murray-von Neumann type classification of C∗-algebras



Background
Types of C∗-algebras

Comparison with existing properties
factorization type results

General classification framework

Proposition

(a) If p,q ∈ OP(A), the following are equivalent.
1. p ∼sp q.
2. ∃ part. isom. u ∈ A∗∗ s.t. her(q) = u∗ her(p)u and
her(p) = u her(q)u∗.
3. ∃ part. isom. w ∈ A∗∗ s.t. p = ww∗ and

{w∗rw : r ∈ OP(A); r ≤ p} = {s ∈ OP(A) : s ≤ q}.

(b) If R is a von Neumann alg. and p,q ∈ Proj(R), then p ∼sp q
as elements in Proj(R∗∗) ⇔ p ∼Mv q as elements in Proj(R).

• Two hered. C∗-alg. B,C ⊆ A are s.t.b. spatially isomorphic if
∃ part. isom. u ∈ A∗∗ such that B = u∗Cu and C = uBu∗.
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Let p,q ∈ OP(A) with p ≤ q.
• The closure of p in q, denoted by p̄q, is the smallest closed
projection of her(q) that dominates p.
We say that p is dense in q if p̄q = q.
In this case, we say that her(p) is essential in her(q) (S. Zhang)
⇔ her(p) ∩ B 6= (0) if (0) 6= B ⊆ her(q) hered. C∗-subalg.
• p is said to be
1. abelian if her(p) is a commutative C∗-algebra;
2. C∗-finite if for any r , s ∈ OP(her(p)) with r ≤ s and r ∼sp s,

one has r̄ s = s.
OPC(A) and OPF (A) are the set of all abelian open proj. and
the set of all C∗-finite open proj. of A resp.
• p is abelian ⇒ p is C∗-finite.
• her(p) is finite dimensional ⇒ p is C∗-finite.
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Definition
A C∗-algebra A is said to be:

i. C∗-finite if 1 ∈ OPF (A);
ii. C∗-semi-finite if any q ∈ OP(A) \ {0} ≥ a proj.

p ∈ OPF (A) \ {0};
iii. of Type A if any q ∈ OP(A) ∩ Z(A∗∗) \ {0} ≥ a proj.

p ∈ OPC(A) \ {0};
iv. of Type B if OPC(A) = {0} but every

q ∈ OP(A) ∩ Z(A∗∗) \ {0} ≥ a proj. p ∈ OPF (A) \ {0};
v. of Type C if OPF (A) = {0}.

• If A is simple, then A is either of type A, type B or type C.
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• A C∗-algebra A is
i. C∗-finite: ∀ hered. C∗-subalg. B ⊆ A, every hered.

C∗-subalg. C ⊆ B spat. isomor. to B is essent. in B;
ii. C∗-semi-finite: every 6= 0 hered. C∗-subalg. of A contains
6= 0 C∗-finite hered. C∗-subalg;

iii. of type A: every 6= 0 closed ideal of A contains 6= 0 abelian
hered. C∗-subalg;

iv. of type B: @ 6= 0 abelian hered. C∗-subalg. but every 6= 0
closed ideal contains 6= 0 C∗-finite hered. C∗-subalg;

v. of type C: @ 6= 0 C∗-finite hered. C∗-subalg.

• A is commutative ⇒ A is type A and C∗-finite.
• K(`2) is of type A, C∗-semi-finite but not C∗-finite.
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Theorem
Let A and B be two strongly Morita equiv. C∗-alg.
(a) A has 6= 0 abelian hered. C∗-subalg. ⇔ B does.
(b) A has 6= 0 C∗-finite hered. C∗-subalg. ⇔ B does.
(c) A is of type A (resp. type B, type C or C∗-semi-finite) ⇔ B
is of type A (resp. type B, type C or C∗-semi-finite).

• A is of type A⇔ A is discrete, in the sense of Peligrad-Zsidó:
any 6= 0 hered. C∗-subalg. contains 6= 0 abelian hered.
C∗-subalg.
• A is C∗-semi-finite⇔ any 6= 0 closed ideal contains 6= 0
C∗-finite hered. C∗-subalg.

Ng A Murray-von Neumann type classification of C∗-algebras



Background
Types of C∗-algebras

Comparison with existing properties
factorization type results

General classification framework

Corollary
Let A be a C∗-algebra with real rank zero.
(a) A is of type A ⇔ any q ∈ Proj(A) \ {0} ≥ an abelian
p ∈ Proj(A) \ {0}.
(b) A is of type B ⇔ @ 6= 0 abelian proj. but every
q ∈ Proj(A) \ {0} ≥ a C∗-finite p ∈ Proj(A) \ {0}.
(c) A is of type C ⇔ @ 6= 0 C∗-finite projection.
(d) A is C∗-semi-finite⇔ every q ∈ Proj(A) \ {0} ≥ a C∗-finite
p ∈ Proj(A) \ {0}.
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• Let p be a projection in a von Neumann algebra R. Then p is
finite if and only if it is C∗-finite.

Proposition
Let R be a von Neumann algebra.
(a) R is of type A ⇔ R is a type I von Neumann alg.
(b) R is of type B ⇔ R is a type II von Neumann alg.
(c) R is of type C ⇔ R is a type III von Neumann alg.
(d) R is C∗-semi-finite⇔ R is a semi-finite von Neumann alg.
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Corollary
Suppose that A is of type A (resp. type B, type C or
C∗-semi-finite).
(a) Any hered. C∗-subalg. of A has the same property.
(b) If A ⊆ B hered. C∗-subalg. generating an essential ideal
I ⊆ B, then B has the same property.

• All the types are respected under taking multiplier algebras.
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Proposition
(a) Any type I C∗-algebra is of type A.
(b) A is of type I if and only if every primitive quotient of A is of
type A.

• B(`2) is of type A but is not a type I C∗-algebra.

• If A is a simple C∗-algebra of type A, then A = K(H) for some
Hilbert space H. If, in addition, A is C∗-finite, then A = Mn for
some positive integer n.
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Proposition
(a) If A is finite, in the sense of Cuntz-Pedersen, then A is
C∗-finite.
(b) If A is semi-finite (resp. of type II), in the sense of
Cuntz-Pedersen, then A is C∗-semi-finite (resp. of type B).

• If A is an inf. dim. simple C∗-algebra with a faithful tracial
state, then A is of type B. In particular, if Γ is an infin. discrete
group s.t. C∗r (Γ) is simple, then C∗r (Γ) is of type B.

• Every simple AF algebra which is not of the form K(H) is of
type B.
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Proposition
(a) If A is of type C, then it is of type III, in the sense of
Cuntz-Pedersen.
(b) If A has real rank zero and is purely infinite, in the sense of
Kirchberg-Rørdam, A is of type C.
(c) If A is a separable purely infinite C∗-algebra with stable rank
one, then A is of type C.

• For any AF -algebra B, the C∗-algebra O2 ⊗ B is of type C.
Note that one may replace O2 with any unital, simple,
separable, purely infinite, nuclear C∗-algebra.
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Theorem
Let A be a C∗-algebra.
(a) ∃ a largest type A (resp. type B, type C and C∗-semi-finite)
hered. C∗-subalg JA (resp. JB, JC and Jsf) of A, which is also
an ideal of A.
(b) JA, JB and JC are mutually disjoint, and JA + JB + JC is an
essent. ideal of A.
If eA,eB,eC ∈ OP(A) ∩ Z (A∗∗) with JA = her(eA), JB = her(eB)
and JC = her(eC), then

1 = eA + eB
1 + eC.

(c) JA + JB is an essent. ideal of Jsf. If esf ∈ OP(A) with
Jsf = her(esf), then esf = eA

esf + eB.
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• Set J⊥ to be the ideal {a ∈ A : aJ = (0)}
a. If Jpostlim is the largest type I closed ideal of A, then

J⊥A = J⊥postlim is the largest anti-liminary hered. C∗-subalg. of
A, and it contains JB + JC as an essent. ideal.

b. J⊥sf = (JA + JB)⊥ = JC.
c. J⊥A ∩ Jsf = JB.

Theorem
Let A be a C∗-algebra.
(a) A/JC is C∗-semi-finite.
(b) If A is C∗-semi-finite, then A/JB is of type A.

• If A and B are str. Morita equiv, the closed ideal of B that
corresp. to JA

A (resp. JA
B, JA

C and JA
sf) under the str. Morita equiv.

is precisely JB
A (resp. JB

B, JB
C and JB

sf).
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•We say that a property P concerning C∗-algebras is
hereditarily stable if ∀ C∗-alg A having prop. P, all hered.
C∗-subalg. of A will have prop. P.
• A sequence {P1, ...,Pn} of hered. stable properties is s.t.b.
compatible if Pi−1 is stronger than Pi for i = 1, ...,n, where P0
means “the C∗-algebra is zero”.
• Let {Pi}i=1,...n be a seq. of compat. hered. stable prop. and
set Pn+1 to be: “the C∗-algebra contains a zero element” (i.e. a
tautology). We say that A is of type T Pi (i = 1, ...,n + 1) if

@ 6= 0 hered. C∗-subalg. of A having prop. Pi−1, but
any 6= 0 closed ideal of A contains 6= 0 hered. C∗-alg.
with property Pi .

• Define Pi(A) := {e ∈ proj(A) : her(e) has prop. Pi}.
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Theorem
Let {Pi}i=1,...n be a seq. of compat. hered. stable prop.
(a) If A is simple, then A is of type T Pj for exactly one
j = 1, ...,n + 1.
(b) If A is str. Morita equiv. to a C∗-alg. of type T Pi , then A is of
type T Pi .
(c) If A is a hered. C∗-subalg. of a C∗-alg. of type T Pi , then A is
of type T Pi .
(d) If A contains a hered. C∗-subalg. that generates an essen.
ideal of type T Pi , then A is of type T Pi .
(e) If A has RR0, then A is of T Pi if and only if Pi−1(A) = {0}
and any q ∈ Proj(A) \ {0} ≥ a proj. p ∈ Pi(A) \ {0}.
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Theorem
(cont.)
(f) ∃ a largest type T Pi hered. C∗-subalg. Ji ⊆ A, which is an
ideal of A s.t. J1,..., Jn+1 are mutually disjoint.

(g) If ei ∈ OP(A) with Ji = her(ei), then
∑n

i=1ei
1

+ en+1 = 1,
and J1 + ... + Jn+1 is essen. ideal of A.
(h) Str. Morita equiv. respects Ji .
(i) If every 6= 0 closed ideal of A contains 6= 0 hered. C∗-subalg.
having Pi , then every 6= 0 closed ideal of A/Ji contains 6= 0
hered. C∗-subalg. having Pi−1.
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Corollary
(a) If A is str. Morita equiv. to a discrete (resp. type II, type III

or semi-finite) C∗-alg, then A has the same property.
(b) If A is a hered. C∗-subalg. of a discrete (resp. type II, type

III or semi-finite) C∗-alg, then A has the same property.
(c) If A contains an essen. hered. C∗-subalg that is discrete

(resp. of type II, of type III or semi-finite), then A also has
the same property.

(d) The sum of the largest discrete closed ideal, the largest
type II closed ideal and the largest type III closed ideal of A
(all of them exist) is essential in A.
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Proposition

Let {Pi}i=1,...,n and {P ′i }i=1,...,n be two seq. of compat. hered.
stable prop. Then “type T Pi = type T P ′

i ” (i = 1, ...,n + 1) ⇔
any 6= 0 C∗-alg with Pi contains 6= 0 hered. C∗-subalg. with P ′i
and vice versa (i = 1, ...,n).
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Reference:
C.K. Ng and N.C. Wong, A Murray-von Neumann type
classification of C∗-algebras, preprint (arXiv:1112.1455).
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