Background
Types of C* -algebras
Comparison with existing properties
factorization type results
General classification framework

A Murray-von Neumann type classification of C^* -algebras

Chi-Keung Ng (joint work with Ngai-Ching Wong)

The Chern Institute of Mathematics Nankai University

Wuhan; 5th-8th June, 2012

- Types I, II, III von-Neumann algebras (Murray-von Neumann):
- $\mathcal{R}=\mathcal{R}_I\oplus\mathcal{R}_{II}\oplus\mathcal{R}_{III}$

v.s. Types I, II, III C*-algebras (Cuntz-Pedersen)

- Murray-von Neumann type classification for C^* -algebras using open projections?
- $\bullet \ \{ \text{open projections} \} = \{ \text{hereditary } \textit{C}^* \text{-subalgebras} \} \ \text{and} \\ \{ \text{central open projections} \} = \{ \text{ideals} \}$
- (Lin) There exists open projections p, q of a C^* -algebra A such that p and q are Murray-von Neumann equivalent but their corresponding hereditary C^* -algebras are non-isomorphic.
- Want an equivalence relation on open projections that is compatible with the Murray-von Neumann equivalence and respects the corresponding hereditary *C**-subalgebras. No such equivalence relation was found except the one by Peligrad and Zsidó (which we only discovered in a later stage of this work).

- A is a C^* -algebra and $OP(A) \subseteq Proj(A^{**})$ is the set of all open projections of A.
- $\forall p \in \text{Proj}(A^{**})$, we set $\text{her}_A(p) := pA^{**}p \cap A$. We may sometimes write her(p) if A is understood.
- Let $p, q \in \text{Proj}(A^{**})$. If $\exists v \in A^{**}$ s.t. $p = vv^*$, $q = v^*v$, $v^* \text{her}_A(p)v = \text{her}_A(q)$ and $v \text{her}_A(q)v^* = \text{her}_A(p)$, we say that p, q are *spatially equivalent* and denote $p \sim_{sp} q$.
- If $B \subseteq A$ is a hereditary C^* -subalgebra, $p, q \in \operatorname{Proj}(B^{**})$, then $\operatorname{her}_A(p) = \operatorname{her}_B(p)$ and $p \sim_{\operatorname{sp}} q$ as elements in $\operatorname{Proj}(B^{**})$ if and only if $p \sim_{\operatorname{sp}} q$ as elements in $\operatorname{Proj}(A^{**})$.
- If $p \sim_{sp} q$ and $p \in \mathsf{OP}(A)$, then $q \in \mathsf{OP}(A)$.

- (a) If $p, q \in OP(A)$, the following are equivalent.
- 1. $p \sim_{sp} q$.
- 2. \exists part. isom. $u \in A^{**}$ s.t. $her(q) = u^* her(p)u$ and $her(p) = u her(q)u^*$.
- 3. ∃ part. isom. $w \in A^{**}$ s.t. $p = ww^*$ and

$$\{w^*rw : r \in \mathsf{OP}(A); r \le p\} = \{s \in \mathsf{OP}(A) : s \le q\}.$$

- (b) If \mathcal{R} is a von Neumann alg. and $p, q \in \operatorname{Proj}(\mathcal{R})$, then $p \sim_{\operatorname{sp}} q$ as elements in $\operatorname{Proj}(\mathcal{R}^{**}) \Leftrightarrow p \sim_{\operatorname{Mv}} q$ as elements in $\operatorname{Proj}(\mathcal{R})$.
- Two hered. C^* -alg. $B, C \subseteq A$ are s.t.b. spatially isomorphic if \exists part. isom. $u \in A^{**}$ such that $B = u^*Cu$ and $C = uBu^*$.

Let $p, q \in OP(A)$ with $p \leq q$.

• The *closure of p in q*, denoted by \bar{p}^q , is the smallest closed projection of her(q) that dominates p.

We say that p is dense in q if $\bar{p}^q = q$.

In this case, we say that her(p) is *essential* in her(q) (S. Zhang)

- \Leftrightarrow her $(p) \cap B \neq (0)$ if $(0) \neq B \subseteq her(q)$ hered. C^* -subalg.
- p is said to be
- 1. abelian if her(p) is a commutative C^* -algebra;
- 2. C^* -finite if for any $r, s \in \mathsf{OP}(\mathsf{her}(p))$ with $r \leq s$ and $r \sim_{\mathsf{sp}} s$, one has $\overline{r}^s = s$.

 $\mathsf{OP}_{\mathcal{C}}(A)$ and $\mathsf{OP}_{\mathcal{F}}(A)$ are the set of all abelian open proj. and the set of all C^* -finite open proj. of A resp.

- p is abelian $\Rightarrow p$ is C^* -finite.
- her(p) is finite dimensional $\Rightarrow p$ is C^* -finite.

Definition

A C*-algebra A is said to be:

- i. C^* -finite if $1 \in \mathsf{OP}_{\mathcal{F}}(A)$;
- ii. C^* -semi-finite if any $q \in \mathsf{OP}(A) \setminus \{0\} \ge a$ proj. $p \in \mathsf{OP}_{\mathcal{F}}(A) \setminus \{0\}$;
- iii. of Type $\mathfrak A$ if any $q \in \mathsf{OP}(A) \cap \mathsf{Z}(A^{**}) \setminus \{0\} \geq a$ proj. $p \in \mathsf{OP}_{\mathcal C}(A) \setminus \{0\}$;
- iv. of Type $\mathfrak B$ if $\mathsf{OP}_{\mathcal C}(A)=\{0\}$ but every $q\in \mathsf{OP}(A)\cap \mathsf Z(A^{**})\setminus \{0\}\geq a$ proj. $p\in \mathsf{OP}_{\mathcal F}(A)\setminus \{0\};$
- v. of Type \mathfrak{C} if $\mathsf{OP}_{\mathcal{F}}(A) = \{0\}$.
- If A is simple, then A is either of type \mathfrak{A} , type \mathfrak{B} or type \mathfrak{C} .

- A C*-algebra A is
 - i. C^* -finite: \forall hered. C^* -subalg. $B \subseteq A$, every hered. C^* -subalg. $C \subseteq B$ spat. isomor. to B is essent. in B;
 - ii. C^* -semi-finite: every $\neq 0$ hered. C^* -subalg. of A contains $\neq 0$ C^* -finite hered. C^* -subalg;
 - iii. of type \mathfrak{A} : every $\neq 0$ closed ideal of A contains $\neq 0$ abelian hered. C^* -subalg;
- iv. of type \mathfrak{B} : $\nexists \neq 0$ abelian hered. C^* -subalg. but every $\neq 0$ closed ideal contains $\neq 0$ C^* -finite hered. C^* -subalg;
- v. of type \mathfrak{C} : $\nexists \neq 0$ C^* -finite hered. C^* -subalg.
- A is commutative \Rightarrow A is type $\mathfrak A$ and C^* -finite.
- $\mathcal{K}(\ell^2)$ is of type \mathfrak{A} , C^* -semi-finite but not C^* -finite.

Let A and B be two strongly Morita equiv. C*-alg.

- (a) A has \neq 0 abelian hered. C^* -subalg. \Leftrightarrow B does.
- (b) A has \neq 0 C^* -finite hered. C^* -subalg. \Leftrightarrow B does.
- (c) A is of type $\mathfrak A$ (resp. type $\mathfrak B$, type $\mathfrak C$ or C^* -semi-finite) $\Leftrightarrow B$ is of type $\mathfrak A$ (resp. type $\mathfrak B$, type $\mathfrak C$ or C^* -semi-finite).
- *A* is of type $\mathfrak{A} \Leftrightarrow A$ is *discrete*, in the sense of Peligrad-Zsidó: any $\neq 0$ hered. C^* -subalg. contains $\neq 0$ abelian hered. C^* -subalg.
- A is C^* -semi-finite \Leftrightarrow any \neq 0 closed ideal contains \neq 0 C^* -finite hered. C^* -subalg.

Corollary

Let A be a C*-algebra with real rank zero.

- (a) A is of type $\mathfrak{A} \Leftrightarrow any \ q \in \operatorname{Proj}(A) \setminus \{0\} \geq an \ abelian \ p \in \operatorname{Proj}(A) \setminus \{0\}.$
- (b) A is of type $\mathfrak{B} \Leftrightarrow \nexists \neq 0$ abelian proj. but every $q \in \text{Proj}(A) \setminus \{0\} \geq a \ C^*$ -finite $p \in \text{Proj}(A) \setminus \{0\}$.
- (c) A is of type $\mathfrak{C} \Leftrightarrow \nexists \neq 0$ C^* -finite projection.
- (d) A is C^* -semi-finite \Leftrightarrow every $q \in \text{Proj}(A) \setminus \{0\} \ge a \ C^*$ -finite $p \in \text{Proj}(A) \setminus \{0\}$.

• Let p be a projection in a von Neumann algebra \mathcal{R} . Then p is finite if and only if it is C^* -finite.

Proposition

Let R be a von Neumann algebra.

- (a) \mathcal{R} is of type $\mathfrak{A} \Leftrightarrow \mathcal{R}$ is a type I von Neumann alg.
- (b) \mathcal{R} is of type $\mathfrak{B} \Leftrightarrow \mathcal{R}$ is a type II von Neumann alg.
- (c) \mathcal{R} is of type $\mathfrak{C} \Leftrightarrow \mathcal{R}$ is a type III von Neumann alg.
- (d) \mathcal{R} is C^* -semi-finite $\Leftrightarrow \mathcal{R}$ is a semi-finite von Neumann alg.

Corollary

Suppose that A is of type $\mathfrak A$ (resp. type $\mathfrak B$, type $\mathfrak C$ or C*-semi-finite).

- (a) Any hered. C*-subalg. of A has the same property.
- (b) If $A \subset B$ hered. C^* -subalg. generating an essential ideal $I \subseteq B$, then B has the same property.
- All the types are respected under taking multiplier algebras.

- (a) Any type I C^* -algebra is of type \mathfrak{A} .
- (b) A is of type I if and only if every primitive quotient of A is of type \mathfrak{A} .
- $\mathcal{B}(\ell^2)$ is of type $\mathfrak A$ but is not a type I C^* -algebra.
- If A is a simple C^* -algebra of type \mathfrak{A} , then $A = \mathcal{K}(H)$ for some Hilbert space H. If, in addition, A is C^* -finite, then $A = M_n$ for some positive integer n.

- (a) If A is finite, in the sense of Cuntz-Pedersen, then A is C*-finite.
- (b) If A is semi-finite (resp. of type II), in the sense of Cuntz-Pedersen, then A is C*-semi-finite (resp. of type B).
- If A is an inf. dim. simple C^* -algebra with a faithful tracial state, then A is of type \mathfrak{B} . In particular, if Γ is an infin. discrete group s.t. $C_r^*(\Gamma)$ is simple, then $C_r^*(\Gamma)$ is of type \mathfrak{B} .
- Every simple AF algebra which is not of the form $\mathcal{K}(H)$ is of type \mathfrak{B} .

- (a) If A is of type \mathfrak{C} , then it is of type III, in the sense of Cuntz-Pedersen.
- (b) If A has real rank zero and is purely infinite, in the sense of Kirchberg-Rørdam, A is of type €.
- (c) If A is a separable purely infinite C^* -algebra with stable rank one, then A is of type \mathfrak{C} .
- For any AF-algebra B, the C^* -algebra $\mathcal{O}_2 \otimes B$ is of type \mathfrak{C} . Note that one may replace \mathcal{O}_2 with any unital, simple, separable, purely infinite, nuclear C^* -algebra.

Let A be a C*-algebra.

- (a) \exists a largest type \mathfrak{A} (resp. type \mathfrak{B} , type \mathfrak{C} and C^* -semi-finite) hered. C^* -subalg $J_{\mathfrak{A}}$ (resp. $J_{\mathfrak{B}}$, $J_{\mathfrak{C}}$ and $J_{\mathfrak{sf}}$) of A, which is also an ideal of A.
- (b) $J_{\mathfrak{A}}$, $J_{\mathfrak{B}}$ and $J_{\mathfrak{C}}$ are mutually disjoint, and $J_{\mathfrak{A}} + J_{\mathfrak{B}} + J_{\mathfrak{C}}$ is an essent. ideal of A.

If $e_{\mathfrak{A}}, e_{\mathfrak{B}}, e_{\mathfrak{C}} \in \mathsf{OP}(A) \cap Z(A^{**})$ with $J_{\mathfrak{A}} = \mathsf{her}(e_{\mathfrak{A}}), J_{\mathfrak{B}} = \mathsf{her}(e_{\mathfrak{B}})$ and $J_{\mathfrak{C}} = \mathsf{her}(e_{\mathfrak{C}}),$ then

$$1=\overline{e_{\mathfrak{A}}+e_{\mathfrak{B}}}^{1}+e_{\mathfrak{C}}.$$

(c) $J_{\mathfrak{A}}+J_{\mathfrak{B}}$ is an essent. ideal of $J_{\mathfrak{sf}}$. If $e_{\mathfrak{sf}}\in\mathsf{OP}(A)$ with $J_{\mathfrak{sf}}=\mathsf{her}(e_{\mathfrak{sf}})$, then $e_{\mathfrak{sf}}=\overline{e_{\mathfrak{A}}}e_{\mathfrak{sf}}+e_{\mathfrak{B}}$.

- Set J^{\perp} to be the ideal $\{a \in A : aJ = (0)\}$
- a. If $J_{postlim}$ is the largest type I closed ideal of A, then $J_{\mathfrak{A}}^{\perp} = J_{postlim}^{\perp}$ is the largest anti-liminary hered. C^* -subalg. of A, and it contains $J_{\mathfrak{B}} + J_{\mathfrak{C}}$ as an essent. ideal.
- b. $J_{\mathfrak{sf}}^{\perp} = (J_{\mathfrak{A}} + J_{\mathfrak{B}})^{\perp} = J_{\mathfrak{C}}.$
- $\mathsf{C.}\ \ J_{\mathfrak{A}}^{\perp}\cap J_{\mathfrak{sf}}=J_{\mathfrak{B}}.$

Let A be a C*-algebra.

- (a) $A/J_{\mathfrak{C}}$ is C^* -semi-finite.
- (b) If A is C^* -semi-finite, then $A/J_{\mathfrak{B}}$ is of type \mathfrak{A} .
- If A and B are str. Morita equiv, the closed ideal of B that corresp. to $J_{\mathfrak{A}}^{A}$ (resp. $J_{\mathfrak{B}}^{A}$, $J_{\mathfrak{C}}^{A}$ and $J_{\mathfrak{sf}}^{A}$) under the str. Morita equiv. is precisely $J_{\mathfrak{A}}^{B}$ (resp. $J_{\mathfrak{B}}^{B}$, $J_{\mathfrak{C}}^{B}$ and $J_{\mathfrak{sf}}^{B}$).

- We say that a property \mathcal{P} concerning C^* -algebras is hereditarily stable if \forall C^* -alg A having prop. \mathcal{P} , all hered. C^* -subalg. of A will have prop. \mathcal{P} .
- A sequence $\{\mathcal{P}_1,...,\mathcal{P}_n\}$ of hered. stable properties is s.t.b. compatible if \mathcal{P}_{i-1} is stronger than \mathcal{P}_i for i=1,...,n, where \mathcal{P}_0 means "the C^* -algebra is zero".
- Let $\{\mathcal{P}_i\}_{i=1,\dots n}$ be a seq. of compat. hered. stable prop. and set \mathcal{P}_{n+1} to be: "the C^* -algebra contains a zero element" (i.e. a tautology). We say that A is of $type\ \mathcal{T}_i^{\mathcal{P}}\ (i=1,\dots,n+1)$ if
 - $\nexists \neq 0$ hered. C^* -subalg. of A having prop. \mathcal{P}_{i-1} , but any $\neq 0$ closed ideal of A contains $\neq 0$ hered. C^* -alg. with property \mathcal{P}_i .
- Define $P_i(A) := \{e \in \operatorname{proj}(A) : \operatorname{her}(e) \text{ has prop. } \mathcal{P}_i\}.$

Let $\{P_i\}_{i=1,...n}$ be a seq. of compat. hered. stable prop.

- (a) If A is simple, then A is of type $\mathcal{T}_j^{\mathcal{P}}$ for exactly one j = 1, ..., n + 1.
- (b) If A is str. Morita equiv. to a C^* -alg. of type $\mathcal{T}_i^{\mathcal{P}}$, then A is of type $\mathcal{T}_i^{\mathcal{P}}$.
- (c) If A is a hered. C^* -subalg. of a C^* -alg. of type $\mathcal{T}_i^{\mathcal{P}}$, then A is of type $\mathcal{T}_i^{\mathcal{P}}$.
- (d) If A contains a hered. C^* -subalg. that generates an essen. ideal of type $\mathcal{T}_i^{\mathcal{P}}$, then A is of type $\mathcal{T}_i^{\mathcal{P}}$.
- (e) If A has RR0, then A is of $\mathcal{T}_i^{\mathcal{P}}$ if and only if $P_{i-1}(A) = \{0\}$ and any $q \in \text{Proj}(A) \setminus \{0\} \geq a$ proj. $p \in P_i(A) \setminus \{0\}$.

(cont.)

- (f) \exists a largest type $\mathcal{T}_i^{\mathcal{P}}$ hered. C^* -subalg. $J_i \subseteq A$, which is an ideal of A s.t. $J_1,...,J_{n+1}$ are mutually disjoint.
- (g) If $e_i \in \mathsf{OP}(A)$ with $J_i = \mathsf{her}(e_i)$, then $\overline{\sum_{i=1}^n e_i}^1 + e_{n+1} = 1$, and $J_1 + \ldots + J_{n+1}$ is essen. ideal of A.
- (h) Str. Morita equiv. respects J_i.
- (i) If every $\neq 0$ closed ideal of A contains $\neq 0$ hered. C^* -subalg. having \mathcal{P}_i , then every $\neq 0$ closed ideal of A/J_i contains $\neq 0$ hered. C^* -subalg. having \mathcal{P}_{i-1} .

Corollary

- (a) If A is str. Morita equiv. to a discrete (resp. type II, type III or semi-finite) C*-alg, then A has the same property.
- (b) If A is a hered. C*-subalg. of a discrete (resp. type II, type III or semi-finite) C*-alg, then A has the same property.
- (c) If A contains an essen. hered. C*-subalg that is discrete (resp. of type II, of type III or semi-finite), then A also has the same property.
- (d) The sum of the largest discrete closed ideal, the largest type II closed ideal and the largest type III closed ideal of A (all of them exist) is essential in A.

Let $\{\mathcal{P}_i\}_{i=1,...,n}$ and $\{\mathcal{P}'_i\}_{i=1,...,n}$ be two seq. of compat. hered. stable prop. Then "type $\mathcal{T}_i^{\mathcal{P}} = \text{type } \mathcal{T}_i^{\mathcal{P}'}$ " $(i=1,...,n+1) \Leftrightarrow \text{any } \neq 0 \text{ C^*-alg with } \mathcal{P}_i \text{ contains } \neq 0 \text{ hered. C^*-subalg. with } \mathcal{P}'_i \text{ and vice versa } (i=1,...,n).$

Background
Types of C*-algebras
Comparison with existing properties
factorization type results
General classification framework

Reference:

C.K. Ng and N.C. Wong, A Murray-von Neumann type classification of *C**-algebras, preprint (arXiv:1112.1455).

Thanks