On application of Orlicz spaces to Statistical Physics.

Wladyslaw Adam Majewski

Instytut Fizyki Teoretycznej i Astrofizyki, UG ul. Wita Stwosza 57, 80-952 Gdańsk, Poland; joint work with Louis E. Labuschagne

- MOTIVATION and OUTLINE:
- To indicate reasons why (classical as well as non-commutative) Orlicz spaces are emerging in the theory of (classical and quantum) Physics
- When a physicist knows that a certain quantity is an observable?
- In any answer: an observable is known when also a function of this observable is known.
- This feature of observables was, probably, a motivation for Newton to develop calculus and to use it in his laws of motion.
- Within the probability calculus, the same question will imply: we wish to know the average of $\langle u \rangle_m$ as well as $\langle F(u) \rangle_m$, at least, for a large class of functions F.

- Assume that F has the Taylor expansion $F(x) = \sum_i c_i x^i$. Our demands mean that $\langle F(u) \rangle_m = \sum_i c_i \langle u^i \rangle_m$ should be well defined. However, this implies that "regular" observables should have all moments finite.
- Define states of a system

$$S_m = \{ f \in L^1(m) : f > 0 \quad \mu - a.s., E(f) = 1 \}.$$

- $E(f) \equiv \langle f \rangle_m$ stands for $\int f(x) dm(x)$.
- Fix $f \in S_m$ and take a real random variable u on (X, Σ, fdm) . Define moment generating functions:

$$\hat{u}_f(t) = \int exp(tu)fdm, \qquad t \in \mathbb{R}$$

- Denote by L_f the set of all random variables such that \hat{u}_f is well defined in a neighborhood of the origin 0, and the expectation of u is zero.
- L_f is actually the **Orlicz space** based on an exponentially growing function $\cosh 1$
- Entropy

1. $H(f) = -\int f(x)lnf(x)d\mu$, $f \in S_{\mu}$, for the classical (continuous) case; 2. $S(\varrho) = -Tr\varrho ln\varrho$, ϱ a density matrix, for the quantum case.

- The problem is that both definitions can lead to divergences.
- The set of "good" density matrices $\{\varrho: S(\varrho) < \infty\}$ is a meager set only (we assume that the dimension of the underlying Hilbert space is infinite!).

- Thus we run into serious problems with the explanation of the phenomenon of return to equilibrium and with the second law of thermodynamics (entropy should be a state function which is increasing in time).
- To solve both outlined above problems we propose to replace the pair of Banach spaces

$$< L^{\infty}(X, \Sigma, m), L^{1}(X, \Sigma, m) >$$
 (1)

• by the pair of Orlicz spaces (or equivalent pairs)(at least for finite measure space).

$$< L^{cosh-1}, L^{(\cdot)ln(\cdot + \sqrt{1 + (\cdot)^2}) - \sqrt{1 + (\cdot)^2} + 1} > .$$
 (2)

• Consequently, we propose the new rigorous approach for description of statistics of regular statistical systems having this advantage that statistics as well as thermodynamics are well settled down

Orlicz spaces

• Definition 1. Let $\psi : [0,\infty) \to [0,\infty]$ be an increasing and leftcontinuous function such that $\psi(0) = 0$. Suppose that on $(0,\infty) \psi$ is neither identically zero nor identically infinite. Then the function Ψ defined by

$$\Psi(s) = \int_0^s \psi(u) du, \qquad (s \ge 0) \tag{3}$$

is said to be a Young's function.

• $x \mapsto \cosh(x) - 1$, $x \mapsto x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} + 1$ are Young's functions while $x \mapsto x \ln x$ not. As we will be interested in nice Young's functions, in the sequel, we will always assume that these functions are continuous, positive and equal to 0 only for x = 0.

• Definition 2. 1. A Young's function Ψ is said to satisfy the Δ_2 -condition if there exist $s_0 > 0$ and c > 0 such that

$$\Psi(2s) \le c\Psi(s) < \infty, \qquad (s_0 \le s < \infty). \tag{4}$$

2. A Young's function Φ is said to satisfy ∇_2 -condition if there exist $x_0 >$ and l > 1 such that

$$\Phi(x) \le \frac{1}{2l} \Phi(lx) \tag{5}$$

for $x \ge x_0$.

• It is easy to verify that the Young's function, given prior to Definition 2, $x \mapsto x ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} + 1$, $(x \mapsto cosh(x) - 1)$, satisfies the Δ_2 -condition (∇_2 -condition, respectively).

Wuhan, June 8, 2012

• Definition 3. Let Ψ be a Young's function, represented as in (3) as the integral of ψ . Let

$$\phi(v) = \inf\{w : \psi(w) \ge v\}, \qquad (0 \le v \le \infty). \tag{6}$$

Then the function

$$\Phi(t) = \int_0^t \phi(v) dv, \qquad (0 \le t \le \infty)$$
(7)

is called the complementary Young's function of Ψ .

• We note that if the function $\psi(w)$ is continuous and increasing monotonically then $\phi(v)$ is a function exactly inverse to $\psi(w)$.

• Define (another Young's function)

$$xln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} + 1 = \int_0^x arsinh(v)dv.$$
 (8)

- Corollary 4. $xln(x + \sqrt{1 + x^2}) \sqrt{1 + x^2} + 1$ and coshx 1 are complementary Young's functions.
- Let L^0 be the space of measurable functions on some σ -finite measure space (X, Σ, m) . We will always assume, that the considered measures have the finite subset property, i.e. $E \in \Sigma$, m(E) > 0 implies the existence of $F \in \Sigma$ such that $F \subset E$ and $0 < m(F) < \infty$.

• **Definition 5.** The Orlicz space L^{Ψ} associated with Ψ is defined to be the set

$$L^{\Psi} \equiv L^{\Psi}(X, \Sigma, m) = \{ f \in L^0 : \Psi(\lambda | f |) \in L^1 \text{ for some } \lambda = \lambda(f) > 0 \}.$$
(9)

• Luxemburg-Nakano norm

$$||f||_{\Psi} = \inf\{\lambda > 0 : ||\Psi(|f|/\lambda)||_1 \le 1\}.$$

- An equivalent - Orlicz norm, for a pair (Ψ,Φ) of complementary Young's functions is given by

$$||f||_{\Phi} = \sup\{\int |fg|dm : \int \Psi(|g|)dm \le 1\}.$$

- L_p -spaces are nice examples of Orlicz spaces. Zygmund spaces:
- \bullet LlogL is defined by the following Young's function

$$slog^+s = \int_0^s \phi(u)du$$

where $\phi(u)=0$ for $0\leq u\leq 1$ and $\phi(u)=1+logu$ for $1<\infty,$ where $log^+x=max(logx,0)$

 $-L_{exp}$ is defined by the Young's function

$$\Psi(s) = \int_0^s \psi(u) du,$$

where $\psi(0) = 0$, $\psi(u) = 1$ for 0 < u < 1, and $\psi(u)$ is equal to e^{u-1} for $1 < u < \infty$. Thus $\Psi(s) = s$ for $0 \le s \le 1$ and $\Psi(s) = e^{s-1}$ for $1 < s < \infty$.

IFTiA Gdańsk University – Poland

• To understand the role of Zygmund spaces the following result will be helpful

Theorem 6. Take $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ for the measure space with $\mu(\mathbb{R}) = 1$. The continuous embeddings

$$L^{\infty} \hookrightarrow L_{exp} \hookrightarrow L^p \hookrightarrow LlogL \hookrightarrow L^1$$
 (10)

hold for all p satisfying $1 . Moreover, <math>L_{exp}$ may be identified with the Banach space dual of LlogL.

- More generally, for a pair (Ψ, Φ) of complementary Young's functions with the function Ψ satisfying Δ_2 -condition there is the following relation $(L^{\Psi})^* = L^{\Phi}$.
- Finally, we will write $F_1 \succ F_2$ if and only if $F_1(bx) \ge F_2(x)$ for $x \ge 0$ and some b > 0, and we say that the functions F_1 and F_2 are equivalent, $F_1 \approx F_2$, if $F_1 \prec F_2$ and $F_1 \succ F_2$.

• Example 7. Consider, for x > 0

$$-F_1(x) = x ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} + 1 = \int_0^x ln(s + \sqrt{1 + x^2}) ds,$$

$$-F_2 = kx lnx = k \int_0^x (lns + 1) ds, \ k > e.$$

Then $F_1 \succ F_2$.

- Remark 8. 1. Recall, $x \mapsto x \ln x$ is not a Young's function. Therefore, it is difficult to speak about Orlicz space $L^{x \ln x}$.
 - 2. If $\Psi \succ F$, Ψ is a Young's function satisfying Δ_2 -condition, the function F is bounded below by -c, then for $f \in L^{\Psi}$ the integral $\int F(f)(u)dm(u)$ is finite provided that the measure m is finite.
- Proposition 9. The function $\mathbb{R}^+ \ni t \mapsto cosht 1$ and $\mathbb{R}^+ \mapsto e^t t 1 \equiv \Phi(t)$ are equivalent, i.e.

$$cosht - 1 \approx e^t - t - 1. \tag{11}$$

- Theorem 10. Let Φ_i , i = 1, 2 be a pair of equivalent Young's function. Then $L^{\Phi_1} = L^{\Phi_2}$.
- These results lead to

Corollary 11. For finite measure spaces $(\mathcal{X}, \Sigma, \mu)$ one has

$$L^{\cosh-1} = L_{exp}.$$
 (12)

Regular classical systems

• Let $\{\Omega, \Sigma, \nu\}$ be a measure space; ν will be called the reference measure. The set of densities of all the probability measures equivalent to ν will be called the state space S_{ν} , i.e.

$$S_{\nu} = \{ f \in L^{1}(\nu) : f > 0 \quad \nu - a.s., E(f) = 1 \},$$
(13)

 $E(f) \equiv \int f d\nu$. $f \in S_{\nu}$ implies that $f d\nu$ is a probability measure.

• Definition 12. The classical statistical model consists of the measure space $\{\Omega, \Sigma, \nu\}$, state space S_{ν} , and the set of measurable functions $L^0(\Omega, \Sigma, \nu)$.

- We defined on $(\Omega, \Sigma, fd\nu)$

$$\hat{u}_f(t) = \int exp(tu) f d\nu, \qquad t \in \mathbb{R}.$$
(14)

• and

Definition 13. The set of all random variables on (Ω, Σ, ν) such that for a fixed $f \in S_{\nu}$

- 1. \hat{u}_f is well defined in a neighborhood of the origin 0,
- 2. the expectation of u is zero,

will be denoted by $L_f \equiv L_f(f \cdot \nu)$ and called the set of regular random variables (these conditions imply that all moments are finite!).

• It was proved

Theorem 14. (Pistone-Sempi) L_f is the closed subspace of the Orlicz space $L^{\cosh -1}(f \cdot \nu)$ of zero expectation random variables.

- Note that there is the relation \succ between the Young's function $xln(x + \sqrt{1+x^2}) \sqrt{1+x^2} + 1$ and the entropic function $c \cdot xlnx$ where c is a positive number. Consequently, the condition $f \in L^{xln}(f \cdot \nu)$ guarantees (for finite measure case) that the continuous entropy is well defined.
- Corollary 15.

$$< L^{cosh-1}, L^{(\cdot)ln(\cdot+\sqrt{1+(\cdot)^2})-\sqrt{1+(\cdot)^2}+1} >$$

or equivalently

 $< L_{exp}, LlogL >$

provides the proper framework for the description of classical regular statistical systems (based on probability measures).

Non-commutative Orlicz spaces

- Let Φ be a given Young's function. \mathcal{M} a semifinite von Neumann algebra equipped with an fns (faithful normal semifinite) trace τ ,
- The space of all τ -measurable operators $\widetilde{\mathcal{M}}$ (equipped with the topology of convergence in measure) plays the role of L^0 .
- Kunze defined the associated noncommutative Orlicz space to be

$$L_{\Phi}^{ncO} = \bigcup_{n=1}^{\infty} n\{f \in \widetilde{\mathcal{M}} : \tau(\Phi(|f|) \le 1\}$$

• He showed that this is a linear space which becomes a Banach space when equipped with the Luxemburg-Nakano norm

$$||f||_{\Phi} = \inf\{\lambda > 0 : \tau(\Phi(|f|/\lambda)) \le 1\}.$$

• One has

$$L_{\Phi}^{ncO}=\{f\in \widetilde{\mathcal{M}}: \tau(\Phi(\lambda|f|))<\infty \quad \text{for some} \quad \lambda=\lambda(f)>0\}.$$

Xu; Doods, Dodds, de Pagter approach

- $f \in \widetilde{\mathcal{M}}$ and $t \in [0, \infty)$, the generalized singular value $\mu_t(f)$ is defined by $\mu_t(f) = \inf\{s \ge 0 : \tau(1 e_s(|f|)) \le t\}$ where $e_s(|f|) \ s \in \mathbb{R}$ is the spectral resolution of |f|.
- The function $t \to \mu_t(f)$ will generally be denoted by $\mu(f)$.

- Banach Function Space of measurable functions on $(0,\infty)$.
- A function norm ρ on $L^0(0,\infty)$ is defined to be a mapping $\rho:L^0_+\to [0,\infty]$ satisfying

$$\begin{aligned} &-\rho(f)=0 \text{ iff } f=0 \text{ a.e.} \\ &-\rho(\lambda f)=\lambda\rho(f) \text{ for all } f\in L^0_+, \lambda>0. \\ &-\rho(f+g)\leq\rho(f)+\rho(g) \text{ for all }. \\ &-f\leq g \text{ implies } \rho(f)\leq\rho(g) \text{ for all } f,g\in L^0_+. \end{aligned}$$

- Such a ρ may be extended to all of L^0 by setting $\rho(f) = \rho(|f|)$.
- Define $L^{\rho}(0,\infty) = \{f \in L^0(0,\infty) : \rho(f) < \infty\}$. If now $L^{\rho}(0,\infty)$ turns out to be a Banach space when equipped with the norm $\rho(\cdot)$, we refer to it as a Banach Function space.

- If $\rho(f) \leq \liminf_n(f_n)$ whenever $(f_n) \subset L^0$ converges almost everywhere to $f \in L^0$, we say that ρ has the Fatou Property.
- If this implication only holds for $(f_n) \cup \{f\} \subset L^{\rho}$, we say that ρ is lower semi-continuous.
- If $f \in L^{\rho}$, $g \in L^{0}$ and $\mu_{t}(f) = \mu_{t}(g)$ for all t > 0, forces $g \in L^{\rho}$ and $\rho(g) = \rho(f)$, we call L^{ρ} rearrangement invariant (or symmetric).

- Dodds, Dodds and de Pagter formally defined the noncommutative space $L^{\rho}(\widetilde{\mathcal{M}})$ to be

$$L^{\rho}(\widetilde{\mathcal{M}}) = \{f \in \widetilde{\mathcal{M}}: \mu(f) \in L^{\rho}(0,\infty)\}$$

and showed that if ρ is lower semicontinuous and $L^{\rho}(0,\infty)$ rearrangementinvariant, $L^{\rho}(\widetilde{\mathcal{M}})$ is a Banach space when equipped with the norm $\|f\|_{\rho} = \rho(\mu(f))$.

- For any Young's function Φ , the Orlicz space $L^{\Phi}(0,\infty)$ is known to be a rearrangement invariant Banach Function space with the norm having the Fatou Property.
- Thus taking ρ to be $\|\cdot\|_{\Phi}$, the very general framework of Dodds, Dodds and de Pagter presents us with an alternative approach to realising noncommutative Orlicz spaces.

• Non-commutative regular systems

- 1. if $x \in m_{\tau}$, and $x \ge 0$, then $\omega_x \in \mathcal{M}^+_*$.
 - 2. If $L^1(\mathcal{M}, \tau)$ stands for the completion of $(m_{\tau}, || \cdot ||_1)$ then $L^1(\mathcal{M}, \tau)$ is isometrically isomorphic to \mathcal{M}_* .
 - 3. $\mathcal{M}_{*,0} \equiv \{\omega_x : x \in m_\tau\}$ is norm dense in \mathcal{M}_* .

Finally, denote by $\mathcal{M}_{*}^{+,1}$ ($\mathcal{M}_{*,0}^{+,1}$) the set of all normalized normal positive functionals in \mathcal{M}_{*} (in $\mathcal{M}_{*,0}$ respectively).

- Definition 16. The noncommutative statistical model consists of a quantum measure space (\mathcal{M}, τ) , "quantum densities with respect to τ " in the form of $\mathcal{M}^{+,1}_{*,0}$, and the set of τ -measurable operators $\widetilde{\mathcal{M}}$.
- Definition 17.

$$L_x^{quant} = \{ g \in \widetilde{\mathcal{M}} : \quad 0 \in D(\widehat{\mu_x^g(t)})^0, \quad x \in m_\tau^+ \}, \tag{15}$$

where $D(\cdot)^0$ stands for the interior of the domain $D(\cdot)$ and

$$\widehat{\mu_x^g(t)} = \int \exp(t\mu_s(g))\mu_s(x)ds, \qquad t \in \mathbb{R}.$$
 (16)

(Notice that the requirement that $0 \in D(\widehat{\mu_x^g(t)})^0$, presupposes that the transform $\widehat{\mu_x^g(t)}$ is well-defined in a neighborhood of the origin.)

IFTiA Gdańsk University – Poland

- We remind that above and in the sequel $\mu(g)$ ($\mu(x)$) stands for the function $[0,\infty) \ni t \mapsto \mu_t(g) \in [0,\infty]$ ($[0,\infty) \ni t \mapsto \mu_t(x) \in [0,\infty]$ respectively).
- To give a non-commutative generalization of Pistone-Sempi theorem we need a generalization of Dodds, Dodds, de Pagter approach i.e. that one which was presented in Section 4.
- Definition 18. Let $x \in L^1_+(\mathcal{M}, \tau)$ and let ρ be a Banach function norm on $L^0((0,\infty), \mu_t(x)dt)$. In the spirit of Dodds, Dodds, de Pagter, we then formally define the weighted noncommutative Banach function space $L^{\rho}_x(\widetilde{\mathcal{M}})$ to be the collection of all $f \in \widetilde{\mathcal{M}}$ for which $\mu(f)$ belongs to $L^{\rho}((0,\infty), \mu_t(x)dt)$. For any such f we write $\|f\|_{\rho} = \rho(\mu(f))$.
- Remark 19. Comparing commutative and non-commutative regular statistical models, we note that $\mu_t(x)$ (the Lebesgue measure dt) in Definition 18 stands for $f(d\nu, respectively)$.

• The mentioned generalization of Dodds, Dodds, de Pagter approach is contained in:

Theorem 20. Let $x \in L^1_+(\mathcal{M},\tau)$. Let ρ be a rearrangement-invariant Banach function norm on $L^0((0,\infty), \mu_t(x)dt)$ which satisfies the Fatou property, $\rho(\chi_E) < \infty$ and $\int_E f d\mu \leq C_E \rho(f)$ for $E : \mu(E) < \infty$. Then $L^{\rho}_x(\widetilde{\mathcal{M}})$ is a linear space and $\|\cdot\|_{\rho}$ a norm. Equipped with the norm $\|\cdot\|_{\rho}$, $L^{\rho}_x(\widetilde{\mathcal{M}})$ is a Banach space which injects continuously into $\widetilde{\mathcal{M}}$.

• and the generalization of Pistone-Sempi is given by

Theorem 21. The set L_x^{quant} coincides with the closed subspace of the weighted Orlicz space $L_x^{\cosh -1}(\widetilde{\mathcal{M}}) \equiv L_x^{\Psi}(\widetilde{\mathcal{M}})$ (where $\Psi = \cosh -1$) of noncommutative random variables with a fixed expectation.

• To show that statistics and thermodynamics can be well established for noncommutative regular statistical systems, we note that

Proposition 22. Let \mathcal{M} be a semifinite von Neumann algebra with an fns trace τ . By χ_I will denote spectral projections of f. Then

 $f \in L_{\log L}(\widetilde{M})^+$ with $\tau(\chi_{[0,1]}) < \infty \iff \tau(|f \log(f)|)$ exists

• Consequently, if the "state" is taken from the noncommutative Zygmund space $L_{\log L}(\widetilde{M})$, then the entropy function exists!

(Note that the above Proposition describes the quantum counterpart of finite measure case!)

• In conclusion, analogously to the commutative case, we got

Corollary 23.

$$< L^{cosh-1}, L^{(\cdot)ln(\cdot+\sqrt{1+(\cdot)^2})-\sqrt{1+(\cdot)^2}+1} >$$

or equivalently (for "finite measure" case)

 $< L_{exp}, LlogL >$

provides the proper framework for the description of non-commutative regular statistical systems, where now Orlicz (and Zygmund) spaces are noncommutative. Note, a general case needs some modifications.