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• MOTIVATION and OUTLINE:

• To indicate reasons why (classical as well as non-commutative) Orlicz spaces
are emerging in the theory of (classical and quantum) Physics

• When a physicist knows that a certain quantity is an observable?

• In any answer: an observable is known when also a function of this observable
is known.

• This feature of observables was, probably, a motivation for Newton to develop
calculus and to use it in his laws of motion.

• Within the probability calculus, the same question will imply: we wish to know
the average of < u >m as well as < F (u) >m, at least, for a large class of
functions F .
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• Assume that F has the Taylor expansion F (x) =
∑

i cix
i. Our demands

mean that < F (u) >m=
∑

i ci < ui >m should be well defined. However,
this implies that “regular” observables should have all moments finite.

• Define states of a system

Sm = {f ∈ L1(m) : f > 0 µ− a.s., E(f) = 1}.

• E(f) ≡< f >m stands for
∫
f(x)dm(x).

• Fix f ∈ Sm and take a real random variable u on (X,Σ, fdm). Define
moment generating functions:

ûf(t) =

∫
exp(tu)fdm, t ∈ IR
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• Denote by Lf the set of all random variables such that ûf is well defined in a
neighborhood of the origin 0, and the expectation of u is zero.

• Lf is actually the Orlicz space based on an exponentially growing function
cosh− 1

• Entropy

1. H(f) = −
∫
f(x)lnf(x)dµ, f ∈ Sµ, for the classical (continuous) case;

2. S(̺) = −Tr̺ln̺, ̺ a density matrix, for the quantum case.

• The problem is that both definitions can lead to divergences.

• The set of “good” density matrices {̺ : S(̺) <∞} is a meager set only (we
assume that the dimension of the underlying Hilbert space is infinite!).
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• Thus we run into serious problems with the explanation of the phenomenon
of return to equilibrium and with the second law of thermodynamics (entropy
should be a state function which is increasing in time).

• To solve both outlined above problems we propose to replace the pair of
Banach spaces

< L∞(X,Σ,m), L1(X,Σ,m) > (1)

• by the pair of Orlicz spaces (or equivalent pairs)( at least for finite measure
space).

< Lcosh−1, L(·)ln(·+
√

1+(·)2)−
√

1+(·)2+1 > . (2)

• Consequently, we propose the new rigorous approach for description
of statistics of regular statistical systems having this advantage that

statistics as well as thermodynamics are well settled down
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Orlicz spaces

• Definition 1. Let ψ : [0,∞) → [0,∞] be an increasing and left-
continuous function such that ψ(0) = 0. Suppose that on (0,∞) ψ is
neither identically zero nor identically infinite. Then the function Ψ defined by

Ψ(s) =

∫ s

0

ψ(u)du, (s ≥ 0) (3)

is said to be a Young’s function.

• x 7→ cosh(x) − 1, x 7→ xln(x +
√

1 + x2) −
√

1 + x2 + 1 are Young’s
functions while x 7→ xlnx not. As we will be interested in nice Young’s
functions, in the sequel, we will always assume that these functions are
continuous, positive and equal to 0 only for x = 0.
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• Definition 2. 1. A Young’s function Ψ is said to satisfy the ∆2-condition
if there exist s0 > 0 and c > 0 such that

Ψ(2s) ≤ cΨ(s) <∞, (s0 ≤ s <∞). (4)

2. A Young’s function Φ is said to satisfy ∇2-condition if there exist x0 > and
l > 1 such that

Φ(x) ≤ 1

2l
Φ(lx) (5)

for x ≥ x0.

• It is easy to verify that the Young’s function, given prior to Definition 2,
x 7→ xln(x +

√
1 + x2) −

√
1 + x2 + 1, (x 7→ cosh(x) − 1), satisfies the

∆2-condition (∇2-condition, respectively).

IFTiA Gdańsk University – Poland 6



On application of Orlicz spaces. Wuhan, June 8, 2012

• Definition 3. Let Ψ be a Young’s function, represented as in (3) as the
integral of ψ. Let

φ(v) = inf{w : ψ(w) ≥ v}, (0 ≤ v ≤ ∞). (6)

Then the function

Φ(t) =

∫ t

0

φ(v)dv, (0 ≤ t ≤ ∞) (7)

is called the complementary Young’s function of Ψ.

• We note that if the function ψ(w) is continuous and increasing monotonically
then φ(v) is a function exactly inverse to ψ(w).
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• Define (another Young’s function)

xln(x+
√

1 + x2) −
√

1 + x2 + 1 =

∫ x

0

arsinh(v)dv. (8)

• Corollary 4. xln(x +
√

1 + x2) −
√

1 + x2 + 1 and coshx − 1 are
complementary Young’s functions.

• Let L0 be the space of measurable functions on some σ-finite measure space
(X,Σ,m). We will always assume, that the considered measures have the
finite subset property, i.e. E ∈ Σ, m(E) > 0 implies the existence of F ∈ Σ
such that F ⊂ E and 0 < m(F ) <∞ .
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• Definition 5. The Orlicz space LΨ associated with Ψ is defined to be the
set

LΨ ≡ LΨ(X,Σ,m) = {f ∈ L0 : Ψ(λ|f |) ∈ L1 for some λ = λ(f) > 0}.
(9)

• Luxemburg-Nakano norm

‖f‖Ψ = inf{λ > 0 : ‖Ψ(|f |/λ)‖1 ≤ 1}.

• An equivalent - Orlicz norm, for a pair (Ψ,Φ) of complementary Young’s
functions is given by

‖f‖Φ = sup{
∫

|fg|dm :

∫
Ψ(|g|)dm ≤ 1}.
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• Lp-spaces are nice examples of Orlicz spaces. Zygmund spaces:

• – LlogL is defined by the following Young’s function

slog+s =

∫ s

0

φ(u)du

where φ(u) = 0 for 0 ≤ u ≤ 1 and φ(u) = 1 + logu for 1 < ∞, where
log+x = max(logx, 0)

– Lexp is defined by the Young’s function

Ψ(s) =

∫ s

0

ψ(u)du,

where ψ(0) = 0 , ψ(u) = 1 for 0 < u < 1, and ψ(u) is equal to eu−1

for 1 < u < ∞. Thus Ψ(s) = s for 0 ≤ s ≤ 1 and Ψ(s) = es−1 for
1 < s <∞.
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• To understand the role of Zygmund spaces the following result will be helpful

Theorem 6. Take (IR,B(IR), µ) for the measure space with µ(IR) = 1.
The continuous embeddings

L∞ →֒ Lexp →֒ Lp →֒ LlogL →֒ L1 (10)

hold for all p satisfying 1 < p < ∞. Moreover, Lexp may be identified with
the Banach space dual of LlogL.

• More generally, for a pair (Ψ,Φ) of complementary Young’s functions with the
function Ψ satisfying ∆2-condition there is the following relation (LΨ)∗ = LΦ.

• Finally, we will write F1 ≻ F2 if and only if F1(bx) ≥ F2(x) for x ≥ 0
and some b > 0, and we say that the functions F1 and F2 are equivalent,
F1 ≈ F2, if F1 ≺ F2 and F1 ≻ F2.
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• Example 7. Consider, for x > 0

– F1(x) = xln(x+
√

1 + x2) −
√

1 + x2 + 1 =
∫ x

0
ln(s+

√
1 + x2)ds,

– F2 = kxlnx = k
∫ x

0
(lns+ 1)ds, k > e.

Then F1 ≻ F2.

• Remark 8. 1. Recall, x 7→ xlnx is not a Young’s function. Therefore, it
is difficult to speak about Orlicz spaceLxlnx.

2. If Ψ ≻ F , Ψ is a Young’s function satisfying ∆2-condition, the function F
is bounded below by −c, then for f ∈ LΨ the integral

∫
F (f)(u)dm(u)

is finite provided that the measure m is finite.

• Proposition 9. The function IR+ ∋ t 7→ cosht− 1 and IR+ 7→ et − t−
1 ≡ Φ(t) are equivalent, i.e.

cosht− 1 ≈ et − t− 1. (11)
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• Theorem 10. Let Φi, i = 1, 2 be a pair of equivalent Young’s function.
Then LΦ1 = LΦ2.

• These results lead to

Corollary 11. For finite measure spaces (X ,Σ, µ) one has

Lcosh−1 = Lexp. (12)
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Regular classical systems

• Let {Ω,Σ, ν} be a measure space; ν will be called the reference measure. The
set of densities of all the probability measures equivalent to ν will be called
the state space Sν, i.e.

Sν = {f ∈ L1(ν) : f > 0 ν − a.s., E(f) = 1}, (13)

E(f) ≡
∫
fdν. f ∈ Sν implies that fdν is a probability measure.

• Definition 12. The classical statistical model consists of the measure space
{Ω,Σ, ν}, state space Sν, and the set of measurable functions L0(Ω,Σ, ν).
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• We defined on (Ω,Σ, fdν)

ûf(t) =

∫
exp(tu)fdν, t ∈ R. (14)

• and

Definition 13. The set of all random variables on (Ω,Σ, ν) such that for
a fixed f ∈ Sν

1. ûf is well defined in a neighborhood of the origin 0,
2. the expectation of u is zero,

will be denoted by Lf ≡ Lf(f · ν) and called the set of regular random
variables (these conditions imply that all moments are finite!).

• It was proved
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Theorem 14. (Pistone-Sempi) Lf is the closed subspace of the Orlicz
space Lcosh−1(f · ν) of zero expectation random variables.

• Note that there is the relation ≻ between the Young’s function xln(x +√
1 + x2) −

√
1 + x2 + 1 and the entropic function c · xlnx where c is a

positive number. Consequently, the condition f ∈ Lxln(f · ν) guarantees (for
finite measure case) that the continuous entropy is well defined.

• Corollary 15.

< Lcosh−1, L(·)ln(·+
√

1+(·)2)−
√

1+(·)2+1 >

or equivalently

< Lexp, LlogL >

provides the proper framework for the description of classical regular statistical
systems (based on probability measures).
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Non-commutative Orlicz spaces

• Let Φ be a given Young’s function. M a semifinite von Neumann algebra
equipped with an fns (faithful normal semifinite) trace τ ,

• The space of all τ -measurable operators M̃ (equipped with the topology of
convergence in measure) plays the role of L0 .

• Kunze defined the associated noncommutative Orlicz space to be

LncO
Φ = ∪∞

n=1n{f ∈ M̃ : τ(Φ(|f |) ≤ 1}

• He showed that this is a linear space which becomes a Banach space when
equipped with the Luxemburg-Nakano norm

‖f‖Φ = inf{λ > 0 : τ(Φ(|f |/λ)) ≤ 1}.
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• One has

LncO
Φ = {f ∈ M̃ : τ(Φ(λ|f |)) <∞ for some λ = λ(f) > 0}.

Xu; Doods, Dodds, de Pagter approach

• f ∈ M̃ and t ∈ [0,∞), the generalized singular value µt(f) is defined by
µt(f) = inf{s ≥ 0 : τ(1l−es(|f |)) ≤ t} where es(|f |) s ∈ R is the spectral
resolution of |f |.

• The function t→ µt(f) will generally be denoted by µ(f).
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• Banach Function Space of measurable functions on (0,∞).

• A function norm ρ on L0(0,∞) is defined to be a mapping ρ : L0
+ → [0,∞]

satisfying

– ρ(f) = 0 iff f = 0 a.e.
– ρ(λf) = λρ(f) for all f ∈ L0

+, λ > 0.
– ρ(f + g) ≤ ρ(f) + ρ(g) for all .
– f ≤ g implies ρ(f) ≤ ρ(g) for all f, g ∈ L0

+.

• Such a ρ may be extended to all of L0 by setting ρ(f) = ρ(|f |).

• Define Lρ(0,∞) = {f ∈ L0(0,∞) : ρ(f) < ∞}. If now Lρ(0,∞) turns
out to be a Banach space when equipped with the norm ρ(·), we refer to it as
a Banach Function space.
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• If ρ(f) ≤ lim infn(fn) whenever (fn) ⊂ L0 converges almost everywhere to
f ∈ L0, we say that ρ has the Fatou Property.

• If this implication only holds for (fn) ∪ {f} ⊂ Lρ, we say that ρ is lower
semi-continuous.

• If f ∈ Lρ, g ∈ L0 and µt(f) = µt(g) for all t > 0, forces g ∈ Lρ and
ρ(g) = ρ(f), we call Lρ rearrangement invariant (or symmetric).
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• Dodds, Dodds and de Pagter formally defined the noncommutative space
Lρ(M̃) to be

Lρ(M̃) = {f ∈ M̃ : µ(f) ∈ Lρ(0,∞)}

and showed that if ρ is lower semicontinuous and Lρ(0,∞) rearrangement-

invariant, Lρ(M̃) is a Banach space when equipped with the norm ‖f‖ρ =
ρ(µ(f)).

• For any Young’s function Φ, the Orlicz space LΦ(0,∞) is known to be a
rearrangement invariant Banach Function space with the norm having the
Fatou Property.

• Thus taking ρ to be ‖·‖Φ, the very general framework of Dodds, Dodds and de
Pagter presents us with an alternative approach to realising noncommutative
Orlicz spaces.
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• Non-commutative regular systems

• 1. nτ = {x ∈ M : τ(x∗x) < +∞}.
2. (definition ideal of the trace τ ) mτ = {xy : x, y ∈ nτ}.
3. ωx(y) = τ(xy), x ≥ 0.

• 1. if x ∈ mτ , and x ≥ 0, then ωx ∈ M+
∗

.
2. If L1(M, τ) stands for the completion of (mτ , || · ||1) then L1(M, τ) is

isometrically isomorphic to M∗.
3. M∗,0 ≡ {ωx : x ∈ mτ} is norm dense in M∗.

Finally, denote by M+,1
∗ (M+,1

∗,0 ) the set of all normalized normal positive
functionals in M∗ (in M∗,0 respectively).
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• Definition 16. The noncommutative statistical model consists of a
quantum measure space (M, τ), “quantum densities with respect to τ ” in

the form of M+,1
∗,0 , and the set of τ -measurable operators M̃.

• Definition 17.

Lquant
x = {g ∈ M̃ : 0 ∈ D(µ̂g

x(t))0, x ∈ m+
τ }, (15)

where D(·)0 stands for the interior of the domain D(·) and

µ̂g
x(t) =

∫
exp(tµs(g))µs(x)ds, t ∈ R. (16)

(Notice that the requirement that 0 ∈ D(µ̂g
x(t))0, presupposes that the

transform µ̂g
x(t) is well-defined in a neighborhood of the origin.)
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• We remind that above and in the sequel µ(g) (µ(x)) stands for the function
[0,∞) ∋ t 7→ µt(g) ∈ [0,∞] ([0,∞) ∋ t 7→ µt(x) ∈ [0,∞] respectively).

• To give a non-commutative generalization of Pistone-Sempi theorem we need
a generalization of Dodds, Dodds, de Pagter approach i.e. that one which was
presented in Section 4.

• Definition 18. Let x ∈ L1
+(M, τ) and let ρ be a Banach function norm

on L0((0,∞), µt(x)dt). In the spirit of Dodds, Dodds, de Pagter, we
then formally define the weighted noncommutative Banach function space
Lρ

x(M̃) to be the collection of all f ∈ M̃ for which µ(f) belongs to
Lρ((0,∞), µt(x)dt). For any such f we write ‖f‖ρ = ρ(µ(f)).

• Remark 19. Comparing commutative and non-commutative regular
statistical models, we note that µt(x) (the Lebesgue measure dt) in Definition
18 stands for f (dν, respectively).
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• The mentioned generalization of Dodds, Dodds, de Pagter approach is
contained in:

Theorem 20. Let x ∈ L1
+(M, τ). Let ρ be a rearrangement-invariant

Banach function norm on L0((0,∞), µt(x)dt) which satisfies the Fatou
property, ρ(χE) < ∞ and

∫
E
fdµ ≤ CEρ(f) for E : µ(E) < ∞. Then

Lρ
x(M̃) is a linear space and ‖ · ‖ρ a norm. Equipped with the norm ‖ · ‖ρ,

Lρ
x(M̃) is a Banach space which injects continuously into M̃.

• and the generalization of Pistone-Sempi is given by

Theorem 21. The set Lquant
x coincides with the closed subspace of the

weighted Orlicz space Lcosh−1
x (M̃) ≡ LΨ

x (M̃) (where Ψ = cosh−1) of
noncommutative random variables with a fixed expectation.
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• To show that statistics and thermodynamics can be well established for
noncommutative regular statistical systems, we note that

Proposition 22. Let M be a semifinite von Neumann algebra with an fns
trace τ . By χI will denote spectral projections of f . Then

f ∈ Llog L(M̃)+ with τ(χ[0,1]) <∞ ⇐⇒ τ(|f log(f)|) exists

• Consequently, if the “state” is taken from the noncommutative Zygmund space
Llog L(M̃), then the entropy function exists!

(Note that the above Proposition describes the quantum counterpart of finite
measure case!)
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• In conclusion, analogously to the commutative case, we got

Corollary 23.

< Lcosh−1, L(·)ln(·+
√

1+(·)2)−
√

1+(·)2+1 >

or equivalently (for “finite measure” case)

< Lexp, LlogL >

provides the proper framework for the description of non-commutative
regular statistical systems, where now Orlicz (and Zygmund) spaces are
noncommutative. Note, a general case needs some modifications.
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