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What are Riesz transforms

Riesz transforms are basic examples of singular integral
operators and play important role in analysis and geometry.

Formally, the Riesz transform on a Riemannian manifold is
written as

R = ∇(−∆)−1/2.

The study of Riesz transforms dates back to the beginning of
the last century (Fatou, ..., Kolmogorov, M. Riesz).



History: Fatou’s thesis

Let f ∈ C(S1,R), u be its harmonic extension in the unit disk
D = {z ∈ C : |z| < 1}. By the Poisson formula, we have

u(reiθ) =
1

2π

∫
S1

1− r2

1− 2r cos(θ − ξ) + r2 f (eiξ)dξ.

The conjugate function of u, denoted by v , defined as the
solution of the Cauchy-Riemann equation

∂u
∂x

=
∂v
∂y
,

∂u
∂y

= −∂v
∂x
,

is uniquely determined by f (up to an additional constant).



Hilbert transform: Fatou’s thesis

The conjugate Poisson kernel representation formula holds

v(reiθ) =
1

2π

∫
S1

sin(θ − ξ)

1− 2r cos(θ − ξ) + r2 f (eiξ)dξ.

In his celebrated thesis, Fatou proved that the non-tangential
limit of v , denoted by

Hf (eiθ) := lim
r→1−

v(reiθ)

exists almost surely on S1. Moreover, one has

Hf (eiθ) =
1

2π
lim
ε→0

∫
|θ−ξ|≥ε

f (eiξ)

tan θ−ξ
2

dξ, a.s. θ ∈ [0,2π].



Hilbert transform

The Hilbert transform on the unit circle S1:

Hf (eiθ) =
1

2π
lim
ε→0

∫
|θ−ξ|≥ε

f (eiξ)

tan θ−ξ
2

dξ, a.s. θ ∈ [0,2π].

Let

f (eiθ) = a0 +
∞∑

n=1

an sin(nθ) + bn cos(nθ).

Then

Hf (eiθ) =
∞∑

n=1

bn sin(nθ)− an cos(nθ).

By the Plancherel formula, we have

‖Hf‖22 =
∞∑

n=1

a2
n + b2

n = ‖f − π(f )‖22,

where
π(f ) = a0 :=

∫
S1

f (eiθ)
dθ
2π
.



Hilbert transform on R

The Hilbert transform on the real line R is defined by

Hf (x) :=
1

2π
lim
ε→0

∫
|x−y |≥ε

f (y)

x − y
dy , a.s. x ∈ R.

In Fourier analysis, for all f ∈ L2(R), we have

Ĥf (ξ) = i
ξ

|ξ|
f̂ (ξ), ∀ξ ∈ R.

By the Plancherel formula, we then obtain

‖Hf‖2 = ‖f‖2, ∀f ∈ L2(R).

Hence, the Hilbert transform H is an isometry in L2.



Landmark papers of A. N. Kolmogorov and M. Riesz

A. N. Kolmogorov: Sur les fonctions harmoniques conjuguées
et les séries de Fourier. Fund. Math. 7 (1925), 24-29.

M. Riesz: Sur les fonctions conjuguées. Math. Zeit. 27 (1927),
218-244

Theorem of A. N. Kolmogorov (1925). There exists a
constant C > 0 such that for all λ > 0, and for all f ∈ L1(R,dx),

Leb({x ∈ R : |Hf (x)| ≥ λ}) ≤ C‖f‖1
λ

.

Theorem of M. Riesz (1927). For all p > 1, there exists a
constant Cp > 0 such that for all f ∈ Lp(R,dx),

‖Hf‖p ≤ Cp‖f‖p.



Remark
1. The proof of M. Riesz’s theorem uses the method of complex
analysis.

2. The truncated Hilbert transform

Hεf (x) :=
1

2π

∫
|x−y |≥ε

f (y)

x − y
dy , x ∈ R

has been used by Carleson (Acta Math 1966) to solve the Luzin
conjecture.



Riesz transforms on Rn

To extend the Lp-continuity of the Hilbert transform to higher
dimensional Euclidean spaces, Caldéron and Zygmund (Acta
Math 1952) developed the real method in the study of singular
integral operators on Euclidean spaces.

Riesz transform has been put as the corner stone in the
Calderon-Zygmund theory.



Riesz transforms on Rn

Definition
For f ∈ C∞0 (Rn), j = 1, . . . ,n, the j-th Riesz transform Rj f of f is
defined by

Rj f (x) :=
Γ((n + 1)/2)

π
n+1

2

∫
Rn

f (y)
xj − yj

|x − y |n+1 dy , a.s. x ∈ Rn.

Formally, we have

Rj =
∂

∂xj
(−∆)−1/2.

Theorem (Calderon-Zygmund1952, cf. E.-M. Stein1970)
For all p > 1, there exists a constant Cp > 0 such that

‖Rj f‖p ≤ Cp‖f‖p, ∀f ∈ Lp(Rn).



Riesz transforms on Lie groups

In 1970, E.-M. Stein developed the Littlewood-Paley theory
for symmetric sub-Markovian semigroups on a measurable
spaces.

Using the Littlewood-Paley inequalities, Stein proved the
Lp-boundedness of the Riesz transforms on compact or
compact type Lie groups.



Riesz transforms on Lie groups

Let G be a compact or compact type Lie group, e the unit
element, e1, . . . ,en an orthonormal basis of the Lie algebra
G = TeG.
Let X1, . . . ,Xn be the left invariant vector fields on G defined by

Xi(g) = (Lg)∗(ej), ∀g ∈ G, j = 1, . . . ,n.

The Casimir operator on G is defined by

∆ = X 2
1 + . . .+ X 2

n .

The Riesz transforms on G are defined by

Rj = Xj(−∆)−1/2, j = 1, . . . ,n.



Riesz transforms on Lie groups

Theorem (E.-M. Stein 1970)
Let G be a compact or compact type Lie group. Then for all
p > 1, there exists a constant Cp > 0 such that

‖Rj f‖p ≤ Cp‖f‖p, ∀f ∈ Lp(G,dx),

where dx denotes the Haar measure on G.



Riesz transform on Gaussian spaces

Let L = ∆− x · ∇ be the Ornstein-Uhlenbeck operator on the
Gaussian space (Rn,dγn), where

dγn(x) =
e−

‖x‖2

2

(2π)n/2 dx .

Following P.-A. Meyer, the Riesz transform associated to the
Ornstein-Uhlenbeck operator is defined by

∇(−L)−1/2f =
1√
π

∫ ∞
0
∇etLf

dt√
t
,

where f ∈ C∞0 (Rn) satisfies

γn(f ) =

∫
Rn

f (x)dγn(x) = 0.



P.-A. Meyer’s inequality

Using a probabilistic approach to the Littlewood-Paley-Stein
inequalities, P.-A. Meyer proved the following remarkable

Theorem (P.-A. Meyer 1982)
For all p > 1, there exists a constant Cp which is independent
of n = dimRn such that

‖∇(−L)−1/2f‖p ≤ Cp‖f‖p, ∀ f ∈ Lp(Rn, γn).

Consequently, it holds that

C−1
p (‖f‖p + ‖∇f‖p) ≤ ‖(1− L)1/2f‖p ≤ Cp(‖f‖p + ‖∇f‖p).

Moreover, the above inequalities remain true on the infinite
dimensional Wiener space equipped with the Wiener measure.



Using the P.-A. Meyer’s inequalities, Airault-Malliavin and Sugita
proved the following beautiful result which consists of the base
of the quasi-sure analysis on infinite dimensional Wiener space
(Malliavin 82/97, Ren 90, Bouleau-Hirsch 91, etc.).

Theorem (Airault-Malliavin 1990, H. Sugita 1990)
All the positive distributions (in the sense of Watanabe) on the

Wiener space are probability measures.



Analytic proof of P.A. Meyer’s inequality

In 1986, G. Pisier gave a simple analytic proof of P.-A. Meyer’s
inequality without the Littlwood-Paley-Stein theory, but using
the rotational invariance of the Gaussian measure.

Pisier’s method has been extended by Malliavin and Nualart to
Riesz transforms associated with the Ornstein-Uhlenbeck
operator acting on functionals defined on Wiener spaces and
with values in UMD Banach spaces, an area which has
increasing interest in the study of geometry on Banach spaces.



Riesz transforms on Riemannian manifolds

Let (M,g) be a complete Riemannian manifold, ∇ the gradient,
and ∆ the Laplace-Beltrami on (M,g).

Definition (Stein70, Strichartz83, Lohoué85)
The Riesz potential on (M,g) is defined by

(−∆)−1/2f =
1√
π

∫ ∞
0

et∆f
dt√

t
.

The Riesz transform on (M,g) is defined by

∇(−∆)−1/2f =
1√
π

∫ ∞
0
∇et∆f

dt√
t
.

Difficulty: Singularity appears when t → 0 and t →∞. The
problem of existence of the limit (in which sense) of these
singular integrals should be precisely studied and determined.



Neumann to Dirichlet operator
LetM = M × R+, on which equipped with the product Riemannian
metric, i.e.,

ds2
M(x , y) = ds2

M(x) + dy2.

Let ∆M be the Laplace-Beltrami operator on M. Then

∆M = ∆M +
∂2

∂y2 .

Consider the Neumann boundary problem onM = M × R:

∆Mu = 0 in M,

∂

∂n
u = f on M.

Suppose that u(x , y) is given by the Poisson integral of the Dirichlet
boundary function f̃ := lim

y→0
u(x , y). Then

u(x , y) = e−y
√
−∆M f̃ (x), (x , y) ∈ M × R+.



Neumann to Dirichlet operator

The Dirichlet and the Neumann boundary conditions are related by

f (x) = − ∂

∂y
e−y

√
−∆M f (x , y)

∣∣∣∣
y=0

=
√
−∆M f̃ (x).

In other words, the Neumann to Dirichlet operator is defined by

f̃ = (−∆M)−1/2f .

Hence, at least formally, the Riesz transform of f on (M,g), defined by

Rf := ∇(−∆M)−1/2f = ∇ lim
y→0

u(·, y),

is the gradient of the non-tangential limit of the solution of the
Neumann boundary problem.



Riesz transforms are pseudo-differential operators

The Riesz potential (−∆)−1/2 is a pseudo-differential
operator of order −1.

The Riesz transform ∇(−∆)−1/2 is a pseudo-differential
operator of order zero.

By the theory of pseudo-differential operators (Seely), the
Riesz transform is always bounded in Lp for all p ∈ (1,∞)
on all compact Riemannian manifolds.



The L2-continuity of Riesz transforms

By the Gaffney L2-integration by parts formula, we have

Proposition (Strichartz JFA1983)
Let (M,g) be a complete Riemannian manifold. Then, for all
f ∈ C∞0 (M),

‖∇f‖22 = −〈〈∆f , f 〉〉 = ‖(−∆)1/2f‖22.

Hence, for all f ∈ C∞0 (M) with Hf = 0, we have

‖∇(−∆)−1/2f‖2 = ‖f‖2,

where

H : L2(M) −→ Ker(∆) ∩ L2(M)

is the harmonic projection. By continuity extension, ∇(−∆)1/2

extends as an L2-isometry from L2(M) \ Ker∆ to L2(M,TM).



Lp-continuity of Riesz transforms

Hence, on any complete Riemannian manifold (M,g), the Riesz
transform R = ∇(−∆)−1/2 is an isometry in L2 :

‖Rf‖2 = ‖f‖2.

A fundamental problem in harmonic analysis is the following

Problem (E.-M. Stein1970, Strichartz1983, Lohoue1985)
Under which condition on a complete non-compact Riemannian
manifold, the Riesz transform is bounded in Lp for all (or some )
p > 1 (but p 6= 2), i.e., ∃ Cp > 0 such that

‖Rf‖p ≤ Cp‖f |p, ∀ f ∈ Lp(M)?



Main methods

The main methods developed in the past decades are

the classical method in harmonic and geometric analysis

the Littlewood-Paley-Stein theory for Riesz transforms

analytic approach based on Calderon-Zygmund theory

probabilistic approach based on martingale inequalities



Classical method in harmonic and geometric analysis

To prove the Lp-boundedness of the Riesz transform

∇(−∆)−1/2f (x) =
1√
π

∫ ∞
0

∫
M

f (y)
∇xpt (x , y)√

t
dydt ,

one needs to use

the double volume property for the Calderon-Zygmund
decomposition on manifolds
the gradient and Hessian estimate of the heat kernel on
manifolds (Li-Yau, Dodziuk, Donnelly-Li, Schoen, Hamilton,
Sheu, Hsu, Stroock...)

This method does not work on Gaussian spaces equipped
with the Wiener measure.



Littlewood-Paley-Stein theory for Riesz transforms

The idea is to prove two Littlewood-Paley-Stein inequalities:

the Lp-boundedness of the horizontal LPS function g2
acting on scalar functions on Riemannian manifolds

g2(f )(x) =

(∫ ∞
0

t
∣∣∣∇e−t

√
a−∆f (x)

∣∣∣2 dt
)1/2

,

the Lq-boundedness of the vertical LPS function g1(ω)
acting on differential one-forms on Riemannian manifolds

g1(ω)(x) =

(∫ ∞
0

t
∣∣∣∣ ∂∂t

e−t
√

a+�ω(x)

∣∣∣∣dt
)1/2

.

where q = p
p−1 , ω ∈ C∞0 (M,ΛT ∗M) is one-form,

Key tool: the Bochner-Weitzenböck formula

� = −∆ + Ric.



One of the main ingredients in the LPS theory is the
commutation formula

de−t
√

a−∆f = e−t
√

a+�(df ),

where � is the Hodge Laplacian on one-forms.
By the spectral decomposition and the Littlewood-Paley
identity, it holds that (Bakry 1984, J. Chen 1985)

〈∇(a−∆)−1/2f , ω〉L2 ≤ 4‖g2(f )‖p‖g1(ω)‖q.

Therefore, if the following LPS inequalities holds

‖g2(f )‖p ≤ Ap‖f‖p, ‖g1(ω)‖q ≤ Bq‖ω‖q,

then by duality argument we have

‖∇(a−∆)−1/2f‖p ≤ 4ApBq‖f‖p.



Some known results

Non-compact Rienannian symmetric space of rank 1
Strichartz (JFA83)

Riemannian manifolds with bounded geometry condition
and strictly positive bottom of L2-spectrum of Laplacian
Lohoué (JFA85, CRAS85, CRAS90, Orsay Preprint94,
MathNachr06)

Riemannian manifolds with Ricci curvature non-negative or
bounded from below
Bakry (87, 89), C.-J. Chen (88), Chen-Luo (88), J.-Y. Li
(91), Shigekawa-Yoshida (92), Yoshida (92, 94)

Counter-examples: Lohoué(94), Coulhon-Ledoux (94),
Coulhon-Duong (99), Carron-Coulhon-Hassell (DMJ06).



Theorem (Bakry 1987)

Let (M,g) be a complete Riemannian manifold, φ ∈ C2(M).
Suppose that there exists a constant a ≥ 0 such that

Ric + Hessφ ≥ −a.

Then, ∀p ∈ (1,∞), ∃Cp > 0 such that

‖∇(a− L)−1/2f‖p ≤ Cp‖f‖p, ∀f ∈ C∞0 (M),

where
‖f‖pp :=

∫
M
|f (x)|pe−φdv .



Ricci curvature

By the Gauss lemma, in the geodesic normal coordinates near
any point p in a Riemannian manifold (M,g), we have

gij = δij + O(|x |2).

In these coordinates, the metric volume form then has the
following Taylor expansion at p:

dνg =

(
1− 1

6
Rijxixj + O(|x |2)

)
dνEuclidean.

Theorem (S.-T. Yau 1975)
Let M be a complete Riemannian manifold with Ric ≥ K . Then,
for any non-negative harmonic function on M, i.e., ∆u = 0, we
have

|∇u| ≤
√

(n − 1)K u.



Some new results

Some new results have been established in recent years in the
following setting

Riemaniann manifolds satisfying the doubling volume
property, relative Faber-Krahn inequalities and an
additional heat kernel regularity conditions
Coulhon-Duong (TAMS99, CRAS01, CPAM03),
Auscher-Couhon-Duong-Hofmann (ASENS04),
Auscher-Coulhon (ASNSP05),
Carron-Coulhon-Hassell (DMJ2006).

Riemannian manifolds on which the negative part of Ricci
curvature satisfies Ln/2+ε-integrability conditions
X.-D. Li (Revista Mat. Iberoamericana 2006)



Theorem (Li RMI2006)
Let (M,g) be an n-dimensional Cartan-Hadamard manifold. Suppose
(C1) there exist a constant C > 0 and a fixed point o ∈ M such that

Ric(x) ≥ −C[1 + d2(o, x)], ∀x ∈ M,

(C2) there exist some constants c ≥ 0 and ε > 0 such that

(K + c)− ∈ L
n
2 +ε(M),

where

K (x) = inf{〈Ric(x)v , v〉 : v ∈ TxM, |v | = 1}, ∀x ∈ M.

Then, for all p ≥ 2, the Riesz transform ∇(−∆)−1/2 is bounded in Lp.



Theorem (Li RMI2006)
Let M be a complete Riemannian manifold, and φ ∈ C2(M). Suppose
that there exists a constant m > 2 such that the Sobolev inequality
holds

‖f‖ 2m
m−2
≤ Cm(‖∇f‖2 + ‖f‖2), ∀f ∈ C∞0 (M).

Suppose that there exist some constants c ≥ 0 and ε > 0 such that

(K + c)− ∈ L
m
2 +ε(M,e−φdv),

where

K (x) = inf{〈(Ric + Hessφ)v , v〉 : v ∈ TxM, |v | = 1}.

Then, the Riesz transform ∇(a− L)−1/2 is bounded in Lp(M,e−φdv)

for all p ≥ 2 and for all a > 0.



Sharp Lp-norm estimates of Riesz transforms

In 1972, Pichorides proved that the Lp-norm of the Hilber
transform is given by

‖H‖p,p = cot
(

π

2p∗

)
, ∀p > 1,

where

p∗ = max
{

p,
p

p − 1

}
.

In 1996, Iwaniec and Martin (Crelles1996) proved that

‖Rj‖p,p = cot
(

π

2p∗

)
, ∀p > 1.



Sharp Lp-norm estimates of Riesz transforms

In 1983, E.-M. Stein (Bull. AMS 1983) proved that the best
constant in the Lp-continuity inequality of the Riesz transform

R = ∇(−∆)−1/2

on Rn is independent of n = dimRn. More precisely,

Theorem (E.-M. Stein 1983)
For all p > 1, there exists a constant Cp > 0 depending only on
p and independent of n = dimRn such that

‖Rf‖p ≤ Cp‖f‖p, ∀f ∈ Lp(Rn,dx),

where

‖Rf‖p :=

∥∥∥∥∥∥∥
 n∑

j=1

|Rj f |2
1/2

∥∥∥∥∥∥∥
p

.



Bañuelos-Wang’s results on Riesz transforms

In 1995, using the Gundy-Varopoulos representation formula
of Riesz transforms, and the sharp Lp-Burkholder inequality for
martingale transforms, Bañuelos and Wang (Duke Math. J.
1995) gave a probabilistic proof of Iwaniec-Martin’s result.

Moreover, they proved the following

Theorem (Bañuelos-Wang 1995)
For all p > 1 and f ∈ Lp(Rn,dx), it holds

‖Rf‖p ≤ 2(p∗ − 1)‖f‖p.

In other words,

‖R‖p,p := sup
f∈Lp(Rn,dx)

‖Rf‖p
‖f‖p

≤ 2(p∗ − 1).



Gundy-Varopoulos representation formula

Let Xt be Brownian motion on Rn, Bt Brownian motion on R,
independent to Xt , B0 = y , with infinitesimal generator d2

dy2 .
(Xt ,Bt ) is called the background radiation process. Let

τ = inf{t > 0 : Bt = 0}.

Theorem (Gundy-Varopoulos79, Gundy-Silverstein82)
Let f ∈ C∞0 (Rn), and let u(x , y) be the Poisson integral of f :

u(x , y) := e−y
√
−∆f (x), (x , y) ∈ Rn × R+.

Then

−1
2

Rf (x) = lim
y→∞

Ey

[∫ τ

0
∇xu(Xs,Bs)dBs

∣∣∣∣Xτ = x
]
,

where
∇ = (∇x ,

∂

∂y
) = (

∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y
).



Gundy-Varopoulos formulas on Riemiann manifolds

Notations
(M,g) a complete Riemannian manifold, φ ∈ C2(M),

L = ∆−∇φ · ∇, dµ = e−φdv ,

Xt : L-diffusion on M with initial distribution µ,
Bt : Brownian motion on R, independent of Xt ,

B0 = y > 0, and E [B2
t ] = 2t .

(Xt ,Bt ) is called the background radiation process
(following Gundy-Varopolous) .



τ = inf{t > 0 : Bt = 0}.

Let Mt ∈ End(T ∗X0
M,T ∗Xt

M) be the solution to the following
covariant SDE along the trajectory of L-diffusion Xt

∇◦dXt Mt = −Ric(L)(Xt )Mt ,

M0 = IdTX0
M ,

where
Ric(L) = Ric +∇2φ,

and ∇◦dXt denotes the Itô stochastic covariant derivative
wrt the Levi-Civita connection on M along {Xs, s ∈ [0, t ]}.



Duality between BM starting from∞ and Bessel 3

In his paper Le dual de H1(Rn) (LNM581, 1977), P.-A. Meyer
described the duality between the Brownian motion starting
from infinity and Bessel 3 as follows :

D’une manière intuitive, on peut donc dire que le retourné du
processus de Bessel issu de λ0 est le “mouvement brownien
venant de l’infini et tué en 0”, où λ0 = dx ⊗ δ0.

In an intuitive way, one can say that the time-reversal process
of the Bessel process starting from λ0 is the “Brownian motion
starting from infinity and killed at 0”, where λ0 = dx ⊗ δ0.



Gundy-Varopoulos formula on Riemannian manifolds

Theorem (Li PTRF 2008, Preprint2011)

Suppose that Ric +∇2φ ≥ −a, where a ≥ 0 is a constant. Let

ua(x , y) = e−y
√

a−Lf (x), x ∈ M, y > 0.

Then

−1
2
∇(a− L)−1/2f (x)

= lim
y→+∞

Ey

[
e−aτMτ

∫ τ

0
easM−1

s ∇ua(Xs,Bs)dBs |Xτ = x
]
.

Remark. In particular, if Ric +∇2φ = −k , then

Mt = ektUt .



Example 1: Riesz transforms on Rn

Let M = Rn, φ = 0. Then

L = ∆, Ric +∇2φ = 0.

Thus, we can recapture the Gundy-Varopoulos representation
formula of Riesz transforms on Rn :

−1
2
∇(−∆)−1/2f (x) = lim

y→+∞
Ey

[∫ τ

0
∇e−Bs

√
−∆f (Xs)dBs |Xτ = x

]
.



Example 2: Riesz transforms on Gaussian spaces

Let M = Rn, φ = ‖x‖2

2 + n
2 log(2π). Then

L = ∆− x · ∇, Ric +∇2φ = Id.

We recapture Gundy’s representation formula (1986) for P.-A.
Meyer’s Riesz transform on n-dimensional Gaussian space:

−1
2
∇(a− L)−1/2f (x)

= lim
y→+∞

Ey

[
e−(a+1)τ

∫ τ

0
e(a+1)s∇e−Bs

√
a−Lf (Xs)dBs |Xτ = x

]
.

In particular, when a = 0, we get

−1
2
∇(−L)−1/2f (x)

= lim
y→+∞

Ey

[
e−τ

∫ τ

0
es∇e−Bs

√
−∆f (Xs)dBs |Xτ = x

]
.



Example 3: Riesz transforms on Spheres

Let M = Sn and φ = 0. Then Ric = n − 1. We recapture
Arcozzi’s representation formula (1998)

−1
2
∇(a−∆Sn )−1/2f (x)

= lim
y→∞

Ey

[
e−(a+n−1)τ

∫ τ

0
e(a+n−1)s∇e−Bs

√
a−∆Sn f (Xs)dBs |Xτ = x

]
.

Let M = Sn(
√

n − 1) and φ = 0. Then Ric = 1. This yields

−1
2
∇(a−∆M)−1/2f (x)

= lim
y→+∞

Ey

[
e−(a+1)τ

∫ τ

0
e(a+1)s∇e−Bs

√
a−∆M f (Xs)dBs |Xτ = x

]
.



Example 4: Riesz transform on Wiener space

Taking n→∞ in the above formula, and using the Poincaré
limit, we can obtain Gundy’s representation formula on Wiener
space (Gundy 1986, S. Song 1992)

−1
2
∇(a− L)−1/2f (x)

= lim
y→+∞

Ey

[
e−(a+1)τ

∫ τ

0
e(a+1)s)∇e−Bs

√
a−Lf (Xs)dBs |Xτ = x

]
,

where
L denotes the Ornstein-Uhlenbeck operator on Wiener
space,
Xt denotes the Ornstein-Uhlenbeck process on Wiener
spacee.



Sharp Lp-norm estimates of Riesz transforms on
Riemannian manifolds

Theorem (Li PTRF2008, Preprint2011)
Suppose that Ric(L) = Ric +∇2φ = 0. Then, for all p > 1, we have

‖∇(a− L)−1/2‖p,p ≤ 2(p∗ − 1),

where

p∗ = max
{

p,
p

p − 1

}
.

Suppose that Ric(L) = Ric +∇2φ ≥ −a, where a ≥ 0 is a constant.
Then, for all p > 1, we have

‖∇(a− L)−1/2‖p,p ≤ 2(p∗ − 1)3/2.



Theorem (Li PTRF2008, Preprint2011)
Let M be a complete Riemannian manifold with Ric = 0. Then
for all 1 < p <∞, we have

‖∇(−∆)−1/2‖p,p ≤ 2(p∗ − 1).

In the case where Ric ≥ 0, we have

‖∇(−∆)−1/2‖p,p ≤ C(p∗ − 1)3/2.

Our results extend the estimates of Iwaniec-Martin (Crelles96),
Bañuelos-Wang (DMJ95)

‖∇(−∆Rn )−/2‖p,p ≤ 2(p∗ − 1), ∀p > 1.

At least in the Euclidean and Gaussian cases, the upper bound
of type O(p∗ − 1) for the Lp norm of the Riesz transform
∇(−∆)−1/2 is asymptotically sharp when p → 1 and p →∞.



Riesz transforms on forms and Lp-Hodge theory

Riesz transforms associated with the Hodge Laplacian
acting on differential forms over complete Riemannian
manifolds (Bakry Lect. Notes in Math. 1987).

Riesz transforms associated with the Laplacian acting on
vector bundles over complete Riemannian manifolds
(Shigekawa-Yoshida J. Math. Soc. Janpan. 1992).

Martingale representation formula and Lp-norm estimates
of Riesz transforms on differential forms on complete
Riemannian manifolds (Li Revista Mat. Iberoamer. 2010).

Weak Lp-Hodge decomposition and Beurling-Ahlfors
transforms on complete Riemannian manifolds
(Li Probab. Th. Related Fields 2011)



Lp-estimates and existence theorems of d and ∂̄

By the Lp-boundedness of the Riesz transforms and the Riesz
potential, we have established

Strong Lp-Hodge decomposition theorem and the global
Lp-estimates and existence theorems of the Cartan-De Rham
equation on complete Riemannian manifolds

dω = α, dα = 0,

See X.-D. Li J. Funct. Anal. 2009.

the global Lp,q-estimates and existence theorems of the
Cartan-De Rham equation on complete Riemannian manifolds

dω = α, dα = 0,

See X.-D. Li J. Geom. Anal. 2010.

the global Lp-estimates and existence theorems of the
Cauchy-Riemann equation on complete Kähler manifolds

∂̄ω = α, ∂̄α = 0.

See X.-D. Li Adv. in Math. 2010.



Witten Laplacian and Bochner-Weitzenböck formula

Let (M,g) be a complete Riemannian manifold, and φ ∈ C∞(M). Let

dµ = e−φdv .

Then ∀α ∈ C∞0 (Λk T ∗M), β ∈ C∞0 (Λk+1T ∗M), we have∫
M
〈dα, β〉e−φdv =

∫
M
〈dα,e−φβ〉dv

=

∫
M
〈α,d∗(e−φβ)〉dv

=

∫
M
〈α,eφd∗(e−φβ)〉e−φdv ,

where d∗ denotes the L2-adjoint of d wrt the volume measure

dv(x) =
√

det g(x)dx .



Let
d∗φ = eφde−φ.

Then the following integration by parts (IBP) formula holds∫
M
〈dα, β〉dµ =

∫
M
〈α,d∗φβ〉dµ.

The Witten Laplacian on M wrt dµ = e−φdv is defined by

�φ = dd∗φ + d∗φd .



The Bochner-Weitzenböck formula

Let ∆ = Tr∇2 be the covariant Laplacian on C∞0 (Λ·T ∗M). Let

∆φ = ∆−∇∇φ.

Theorem (Bochner-Weitzenböck formula)
Acting on one forms, we have

�φ = −∆φ + Ric +∇2φ.

In general, acting on k-forms, we have

�φ = −∆φ + Wk + Λk∇2φ,

where in a local normal coordinate (e1, . . . ,en) near by x,

Wk (x) =
∑
i<j

e∗i ∧ iej R(ei ,ej ).



Weak L2-Hodge decomposition theorems

Theorem (Kodaira-De Rham)
Let M be a complete Riemannian manifold. Then the Weak
L2-Hodge decomposition theorem holds: for all k = 0,1, . . . ,n,

L2(ΛkT ∗M) = Ker�k ⊕ dC∞0 (Λk−1T ∗M)⊕ d∗C∞0 (Λk+1T ∗M),

where {·} denotes the L2-closure of {·} in L2(ΛkT ∗M).



Strong L2-Hodge decomposition theorems

Theorem (Cheeger, Dodziuk, Donnelly, Gromov, ...)
Let M be a complete Riemannian manifold. Suppose that there
exists λ1 > 0 such that

‖ω − Hω‖2 ≤ λ1〈〈ω,�ω〉〉, ∀ω ∈ C∞0 (ΛkT ∗M).

Then the Strong L2-Hodge decomposition theorem holds

L2(ΛkT ∗M) = Ker�k ⊕ dW 1,2(Λk−1T ∗M)⊕ d∗W 1,2(Λk+1T ∗M),

where

W 1,2(ΛkT ∗M) = {ω ∈ L2(ΛkT ∗M) : |dω|+ |d∗ω| ∈ L2(M)}.



Strong Lp-Hodge decomposition theorem

Theorem (Li JFA2009)
Let M be a complete Riemannian manifold, 1 < p,q <∞, 1

p + 1
q = 1.

Suppose that
(1) The Riesz transforms d�−1/2

k and d∗�−1/2
k are bounded in Lp and

Lq , i.e., ∃Cp > 0 such that: ∀ω ∈ Lr (Λk T ∗M), r = p,q,

‖d�−1/2
k ω‖r + ‖d∗�−1/2

k ω‖r ≤ Cp‖ω‖r .

(2) The Riesz potential �−1/2
k is bounded in Lp, i.e., ∃Cp > 0 such that

‖�−1/2
k ω‖p ≤ Cp‖ω‖p, ∀ω ∈ Lp(Λk T ∗M), �kω 6= 0.

Then the Strong Lp-Hodge decomposition holds: ∀ω ∈ Lp(Λk T ∗M),

ω = Hω + dd∗�−1
k ω + d∗d�−1

k ω.

where H : Lp(Λk T ∗M)→ Ker�k ∩ Lp(Λk T ∗M) is the Hodge projection.



Lp-Poincaré inequality on forms

Theorem (Li JFA2009)
Let M be a complete Riemannian manifold, 1 < p,q <∞, 1

p + 1
q = 1.

Suppose that the Riesz transforms d�−1/2
k and d∗�−1/2

k are bounded
in Lp and Lq , i.e., ∃Cr > 0 such that: ∀ω ∈ Lr (Λk T ∗M), r = p,q,

‖d�−1/2
k ω‖r + ‖d∗�−1/2

k ω‖r ≤ Cp‖ω‖r .

Then the Riesz potential �−1/2
k is bounded in Lp, i.e., ∃Cp > 0 such

that

‖�−1/2
k ω‖p ≤ Cp‖ω‖p, ∀ω ∈ Lp(Λk T ∗M), �kω 6= 0,

if and only if the Lp-Poincaré inequality holds on k-forms: ∃C′p > 0
such that

‖ω − Hω‖p ≤ C′p(‖dω‖p + ‖d∗ω‖p) ∀ω ∈ C∞0 (Λk T ∗M),

where H : Lp(Λk T ∗M)→ Ker�k ∩ Lp(Λk T ∗M) is the Hodge projection.



Riesz transforms on forms

Theorem (Bakry 1987, Li 2010)
Let M be a complete Riemannian manifold. Suppose that

Wk +∇2φ ≥ 0, Wk+1 +∇2φ ≥ 0.

Then, ∃Ck > 0 such that: ∀p ∈ (1,∞), ∀ω ∈ Lp(ΛkT ∗M, µ),

‖d�−1/2
k ω‖p ≤ Ck (p∗ − 1)3/2‖ω‖p,

where ‖ · ‖p denotes the Lp-norm with respect to dµ = e−φdv.



Semigroup domination and Riesz potential on forms

Theorem (Malliavin, Donnelly-P. Li, Bakry, Elworthy...)
Let M be a complete Riemannian manifold. Suppose that ∃K ∈ R
such that

Wk +∇2φ ≥ K .

Then for all ω ∈ C∞0 (Λk T ∗M),

|e−t�kω(x)| ≤ e−Ktet∆|ω|(x).

Theorem (Bakry-Emery 1986, Li2009)
Let M be a complete Riemannian manifold. Suppose that

Wk +∇2φ ≥ ρ > 0.

Then ∀p ∈ (1,∞), ∀ω ∈ Lp(Λk T ∗M, µ),

‖�−1/2
k ω‖p ≤

1
√
ρ
‖ω‖p.

where ‖ · ‖p denotes the Lp-norm with respect to dµ = e−φdv.



Lp-estimates and existence theorems of d

Theorem (Li JFA 2009)
Let M be a complete Riemannian manifold, φ ∈ C2(M), dµ = e−φdv.
Suppose that there exists a constant ρ > 0 such that

Wk +∇2φ ≥ ρ, Wk−1 +∇2φ ≥ 0,

where Wk denotes the Weitzenböck curvature operator on k-forms.
Then, for all α ∈ Lp(Λk T ∗M, µ) such that

dα = 0,

there exists some ω ∈ Lp(Λk−1T ∗M, µ) such that

dω = α,

and satisfying

‖ω‖p ≤
Ck (p∗ − 1)3/2

√
ρ

‖α‖p.



Beurling-Ahlfors transforms on Riemannian manifolds

Theorem (Li RMI2010)
Let M be a complete Riemannian manifold, φ ∈ C2(M), dµ = e−φdv.
Suppose that

Wk +∇2φ ≥ 0, Wk±1 +∇2φ ≥ 0,

where Wk denotes the Weitzenböck curvature operator on k-forms.
Then there exists a constant Ck > 0 such that for all p > 1 and for all
ω ∈ Lp(Λk T ∗M, µ), we have

‖Bµ,kω‖p ≤ Ck (p∗ − 1)3‖ω‖p,

where
Bµ,kω := (dd∗µ − d∗µd)�−1

µ,kω

is the Beurling-Ahlfors transform with respect to the weighted volume
measure µ on k-th forms, and Ck > 0 is a constant depending only
on k.



Beurling-Ahlfors transforms on Riemannian manifolds

In the case of complete Riemannian manifolds with standard volume
measure, we have the following

Theorem (Li PTRF2011)
Let M be a complete Riemannian manifold, dν(x) =

√
det g(x)dx.

Suppose that
Wk ≥ 0,

where Wk denotes the Weitzenböck curvature operator on k-forms.
Then there exists a constant Ck > 0 such that for all p > 1 and for all
ω ∈ Lp(Λk T ∗M, ν), we have

‖Bkω‖p ≤ Ck (p∗ − 1)3/2‖ω‖p,

where
Bkω := (dd∗ − d∗d)�−1

k ω

is the Beurling-Ahlfors transform with respect to the volume measure
ν on k-th forms, and Ck > 0 is a constant depending only on k.



Riesz transforms on UMD vector bundles over
Riemannian manifolds

Recall that Pisier (1986), Malliavin and Nualart (1994) proved he
Riesz transforms associated with the Ornstein-Uhlenbeck operator for
the UMD Banach spaces valued functionals is bounded in Lp on the
finite and infinite dimensional Gaussian (Wiener) spaces.

This method depends on the rotational invariance of the Gaussian
measure. It is an open problem whether this method can be extended
to Riesz transforms defined on the complete Riemannian manifolds.

Based on some discussions with Marius Junge and Quanhua Xu, it is
very possible that we can extend the Gundy-Varopoulos type
martingale representation formulas to the Riesz transform of UMD
Banach spaces valued functionals over complete Riemaniann
manifolds with suitable curvature condition.



Riesz transforms on UMD Banach spaces valued
functionals on manifolds

Theorem (Junge-Li-Xu, work in progress)
Let M be a complete Riemannian manifold, φ ∈ C2(M), and E an
UMD Banach space. Suppose that

Ric +∇2φ ≥ 0.

Then there exists a constant C(E) > 0, depending on E but
independent of n = dimM such that for all 1 < p <∞,

‖∇(−L)−1/2f‖p ≤ C(E)(p∗ − 1)3/2‖f‖p,

for all f : M → E with the following form

f (x) =
m∑

i=1

fi (x)ei ,

where L = ∆−∇φ · ∇, fi ∈ C∞0 (M,R), e1, . . . ,em ∈ E, m ∈ N.



Riesz transforms on UMD Banach spaces valued
functionals on manifolds

Problem
What happens for the Riesz transforms associated with the
Hodge Laplacian on UMD Banach space E-valued differential
forms over complete non-compact Riemannian manifolds?



Thank you!
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