Some Beurling-Fourier algebras are operator algebras

Some Beurling-Fourier algebras are operator algebras

Hun Hee Lee

Jointly with Mahya Ghandehari, Ebrahim Samei and Nico Spronk

Wuhan, June 6, 2012

Weighted convolution algebras

- ► *G*: a discrete group.
- $\omega: G \to (0,\infty)$ is called a **weight** if it is sub-multiplicative i.e.

$$\omega(st) \leq \omega(s)\omega(t), \ \ s,t\in G.$$

- ▶ $\ell^1(G; \omega)$, a weighted ℓ^1 space equipped with the norm $\|f\|_{\ell^1(G;\omega)} = \sum_{x \in G} \omega(x) |f(x)|$, is still a Banach algebra w.r.t. the convolution provided that ω is a weight in the above sense. $\ell^1(G; \omega)$ is called a Beurling algebra on G.
- ► (Example: Polymonial weights) $G = \mathbb{Z}^d$, $\alpha \ge 0$. $\omega_{\alpha}^{\text{poly}}(n) = (1 + |n_1| + \dots + |n_d|)^{\alpha}$, $n = (n_1, \dots, n_d) \in \mathbb{Z}^d$.

A result of Varopoulos

(Varopoulos, '72)

 $\ell^1(\mathbb{Z}; \omega_{\alpha}^{\text{poly}})$ with maximal operator space structure is completely isomorphic to an operator alg. iff $\alpha > \frac{1}{2}$.

- Note that $\ell^1(\mathbb{Z}; \omega_{\alpha}^{\text{poly}})$ is Aren regular only when $\alpha > 0$.
- (Ricard, Ghandehari/L/Samei/Spronk, preprint) ℓ¹(Z^d; ω_α^{poly}) with maximal operator space structure is completely isomorphic to an operator alg. iff α > d/2.

Reformulation using co-multilplication

 We begin with the co-multiplication (the adjoint of the convolution map)

$$\Gamma: \ell^{\infty}(G) \to \ell^{\infty}(G \times G)$$

given by $\Gamma(f)(s, t) = f(st)$. • $(\ell^1(G; \omega))^* = \ell^{\infty}(G; \omega^{-1})$ with the norm

$$\|f\|_{\ell^{\infty}(G;\omega^{-1})} := \left\|\frac{f}{\omega}\right\|_{\infty}$$

so that $\Phi: \ell^\infty(G) \to \ell^\infty(G; \omega^{-1}), \ f \mapsto f \omega$ is an isometry.

Reformulation using co-multilplication: continued

Using the convolution again on ℓ¹(G; ω) means we will use the same Γ on ℓ[∞](G; ω⁻¹). Then, the isometry Φ gives us the modified co-multiplication

$$\widetilde{\mathsf{\Gamma}}: \ell^\infty({\mathsf{G}}) o \ell^\infty({\mathsf{G}} imes {\mathsf{G}}), \ f \mapsto \mathsf{\Gamma}(f)\mathsf{\Gamma}(\omega)(\omega^{-1} \otimes \omega^{-1}).$$

- Note that $\Gamma(\omega)(\omega^{-1}\otimes\omega^{-1})\leq 1$ iff ω is a weight.
- We would like to do the same procedure in the Fourier algebra setting.

Weighted version of the Fourier algebra A(G)

G : compact group.

•
$$A(G) = \{ f \in C(G) | ||f||_{A(G)} := \sum_{\pi \in \widehat{G}} d_{\pi} ||\widehat{f}(\pi)||_{S^{1}_{d_{\pi}}} < \infty \},$$

where S_n^1 implies the trace class on ℓ_n^2 .

Thus, we have

$$VN(G)\cong igoplus_{\pi\in\widehat{G}}M_{d_{\pi}} ext{ and } A(G)\cong \ell^1 ext{-} igoplus_{\pi\in\widehat{G}}d_{\pi}S^1_{d_{\pi}},$$

so that A(G) is a one of the simplest non-commutative L^1 -spaces.

The representation picture of G suggests us a simple model for a weight.

$$\mathsf{A}(G;\omega) := \{ f \in C(G) \mid \\ \|f\|_{\mathcal{A}(G;\omega)} := \sum_{\pi \in \widehat{G}} d_{\pi} \omega(\pi) \left\| \widehat{f}(\pi) \right\|_{S^{1}_{d_{\pi}}} < \infty \}.$$

Weighted version of the Fourier algebra A(G): continued

The co-multiplication this time is given by

 ${\sf F}:VN({\sf G})
ightarrow VN({\sf G} imes {\sf G}), \ \lambda(x)\mapsto \lambda(x)\otimes \lambda(x),$

where $\lambda(x)$ is the left translation operator acting on $L^2(G)$. For $\omega : \widehat{G} \to (0, \infty)$ we associate an operator

$$W = (W(\pi)), \quad W(\pi) = \omega(\pi) id_{M_{d_{\pi}}}.$$

▶ We consider the following weighted spaces

$$VN(G; W^{-1}) := \{AW : A \in VN(G)\}$$
 with the norm
 $\|AW\|_{VN(G;W^{-1})} = \|A\|_{VN(G)}$ and
 $A(G; W) := \{W^{-1}\phi : \phi \in A(G)\}$ with the norm
 $\|W^{-1}\phi\|_{A(G;W)} = \|\phi\|_{A(G)}$.

- Clearly $A(G; W) \cong A(G; \omega)$.
- $\Phi: VN(G) \rightarrow VN(G; W^{-1}), A \mapsto AW$ is an (complete) isometry.

Weighted version of the Fourier algebra A(G): continued 2

If we use the same Γ on VN(G; W⁻¹), then by applying Φ we get a modified co-multiplication

$$\widetilde{\mathsf{\Gamma}}: \mathsf{VN}(\mathsf{G}) \to \mathsf{VN}(\mathsf{G} \times \mathsf{G}), \ A \mapsto \mathsf{\Gamma}(A)\mathsf{\Gamma}(W)(W^{-1} \otimes W^{-1}).$$

• We say that $\omega: \widehat{\mathcal{G}} o (0,\infty)$ is a **weight** if

$$\Gamma(W)(W^{-1}\otimes W^{-1})\leq I.$$

Then A(G; W) is a (completely contractive) Banach algebra under the pointwise multiplication. We call A(G; W) a Beurling-Fourier algebra on G.

Examples of weights

▶ We need to transfer Γ to the setting on $\bigoplus_{\pi \in \widehat{G}} M_{d_{\pi}}$. For any $A = (A(\pi))_{\pi \in \widehat{G}}$ we have

$$\Gamma(A)(\pi,\pi')\cong igoplus_{\sigma\subset\pi\otimes\pi'}A(\sigma), \ \ \pi,\pi'\in\widehat{G},$$

where $\sigma \subset \pi \otimes \pi'$ implies that $\sigma \in \widehat{G}$ appears in the decomposition of $\pi \otimes \pi'$.

• Thus, $\omega: \widehat{G} \to (0,\infty)$ is a **weight** if and only if

$$\omega(\sigma) \le \omega(\pi)\omega(\pi')$$

for every $\sigma \subset \pi \otimes \pi'$. • $\omega_{\alpha}(\pi) = d_{\pi}^{\alpha}, \pi \in \widehat{G}$, the dimension weight of order α . • *G*: connected Lie group, *S*: a finite generating set in \widehat{G} . $\tau_{S}(\pi) = (\text{length function})$ the least number *k* with $\pi \in S^{\otimes k}$. $\omega_{S}^{\alpha}(\pi) = (1 + \tau_{S}(\pi))^{\alpha}$, the polynomial weight of order α .

Some Beurling-Fourier algebras are operator algebras

▶ (Blecher, '95)

A c.c. Banach alg. \mathcal{A} is completely isomorphic to an operator alg. iff the multiplication map m extends to a completely bounded map $m : \mathcal{A} \otimes_h \mathcal{A} \to \mathcal{A}$.

 A(G, ω) with its natural operator space structure is completely isomorphic to an operator alg. iff the modified co-multiplication Γ extends to a completely bounded map

$$\tilde{\Gamma}: VN(G) \rightarrow VN(G) \otimes_{eh} VN(G),$$

where $VN(G) \otimes_{eh} VN(G) \cong (A(G) \otimes_h A(G))^*$.

Positive directions

- Since Γ̃: VN(G) → VN(G) ⊗VN(G) is a complete contraction and Γ̃(A) = Γ(A)Γ(W)(W⁻¹ ⊗ W⁻¹) we can get positive results when Γ(W)(W⁻¹ ⊗ W⁻¹) is a "multiplier" from VN(G) ⊗VN(G) into VN(G) ⊗_{eh} VN(G).
- ▶ (Non-commutative Littlewood multiplier: Ghandehari/L/Samei/Spronk, preprint) Elements in $VN(G) \otimes L_r^2(VN(G))$ and $L_c^2(VN(G)) \otimes VN(G)$ are left and right cb-multipliers from $VN(G) \otimes VN(G)$ into $VN(G) \otimes_{eh} VN(G)$, where H_r and H_c are row and column Hilbert spaces for a Hilbert space H.
- We hope to find the decomposition

$$\Gamma(W)(W^{-1}\otimes W^{-1})=T_1+T_2,$$

 $\mathcal{T}_1 \in L^2_c(VN(G))\bar{\otimes}VN(G) \text{ and } \mathcal{T}_2 \in VN(G)\bar{\otimes}L^2_r(VN(G)).$

Positive directions: continued

• Let
$$T = \Gamma(W)(W^{-1} \otimes W^{-1})$$
, then

$$T(\pi,\pi') \cong \bigoplus_{\sigma \subset \pi \otimes \pi'} \frac{\omega(\sigma)}{\omega(\pi)\omega(\pi')} id_{M_{d_{\sigma}}}$$

▶ When *G* is a compact connected Lie group and $\omega = \omega_{\alpha}$ we have

$$rac{\omega(\sigma)}{\omega(\pi)\omega(\pi')}\lesssim rac{1}{(1+ au_{\mathcal{S}}(\pi))^lpha}+rac{1}{(1+ au_{\mathcal{S}}(\pi'))^lpha},$$

so that
$$T \lesssim T_1 + T_2$$
 with
 $T_1 = \left(\bigoplus_{\pi \in \widehat{G}} \frac{1}{(1 + \tau_S(\pi))^{lpha}} id_{M_{d_{\pi}}} \right) \otimes 1_{VN(G)}$ and
 $T_2 = 1_{VN(G)} \otimes \left(\bigoplus_{\pi' \in \widehat{G}} \frac{1}{(1 + \tau_S(\pi'))^{lpha}} id_{M_{d_{\pi'}}} \right)$

Positive directions: continued 2

•
$$\left\| \tilde{T}_2 \right\|_{VN(G)\bar{\otimes}L^2_r(VN(G))} \lesssim \left(\sum_{\pi \in \widehat{G}} \frac{d_{\pi}^2}{(1+\tau_S(\pi))^{2\alpha}} \right)^{\frac{1}{2}} < \infty$$

if $\alpha > \frac{d(G)}{2}$ (a well-known Lie theory).

(Ghandehari/L/Samei/Spronk, preprint) G: connected Lie group, S: a canonical generating set

 $A(G, \omega_{S}^{\alpha})$ is completely isomorphic to an operator algebra if $\alpha > \frac{d(G)}{2}$.

Recall that when G = T^d the above condition is actually an if and only if condition.

Positive directions: the case of dimension weights

- (Ghandehari/L/Samei/Spronk, preprint) $G = SU(n), n \le 5$ $A(G, \omega^{\alpha})$ is completely isomorphic to an operator algebra if $\alpha > \frac{d(G)}{2}$.
- ► The above result is related to the following conjecture on representations of SU(n).
- (Conjecture, true for $n \le 5$) Let $\pi_{\lambda}, \pi_{\mu}, \pi_{\nu} \in \widehat{SU(n)}$ with $\pi_{\nu} \subset \pi_{\lambda} \otimes \pi_{\mu}$ Then we have

$$rac{{\operatorname{\mathsf{dim}}} \pi_
u}{{\operatorname{\mathsf{dim}}} \pi_\lambda {\operatorname{\mathsf{dim}}} \pi_\mu} \lesssim {\mathit{\mathsf{C}}}_n \left(rac{1}{\lambda_1+1} + rac{1}{\mu_1+1}
ight) \, .$$

However, A(G, ω^α) is never completely isomorphic to an operator algebra for G = U(n) (non-simple).

Negative directions

(Restriction of weights to subgroups)

H: a closed subgroup of G, $\omega: \widehat{G} \to (0, \infty)$: a weight. We get a weight $\omega_H: \widehat{H} \to (0, \infty)$ defined by

$$\omega_H(\rho) = \inf \{ \omega(\pi) \mid \rho \subset \pi|_H \}.$$

Then $A(H; \omega_H)$ is a (completely contractive) Banach algebra quotient of $A(G; \omega)$.

- ► (Ghandehari/L/Samei/Spronk, preprint) $G = SU(n), H \cong T^{n-1}$ the maximal torus $(\omega_{\alpha})_{H} \cong \omega_{(n-1)\alpha}^{\text{poly}}$ and $(\omega_{S}^{\alpha})_{H} \cong \omega_{\alpha}^{\text{poly}}$.
- A(SU(n), ω^α_S) is not completely isomorphic to an operator alg. if α ≤ n-1/2.
- A(SU(n), ω_α) is not completely isomorphic to an operator alg. if α ≤ ¹/₂.

Some consequences

- A(G; ω_{2^k}) is known to be a unital closed subalgebra of A(G^(2k)), where G^(2k) = G × · · · × G, 2k-times.
- A(SU(n); ω_{2^k}) is a unital closed subalgebra of A(SU(n)^(2k)) which are isomorphic to an operator algebra for big enough k.
- Hopefully, we get interesting non-selfadjoint operator algebras associated to groups.

Further directions for Beurling-Fourier algebras

- Is $\alpha > \frac{\dim G}{2}$ optimal?
- Non-central weights by extension procedure.
- The case of compact quantum groups.
- Non-compact groups.