Square function estimates and dilation properties of operators on noncommutative L^{p}-spaces

Christian Le Merdy

Wuhan, June 7th, 2012

Square functions on classical L^{p}-spaces

Let (Ω, μ) be a measure space and let $1<p<\infty$.
Let $T: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$.
For any $x \in L^{p}(\Omega)$, we consider

$$
\|x\|_{T}=\left\|\left(\sum_{k=1}^{\infty} k\left|T^{k}(x)-T^{k-1}(x)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}}
$$

This may be finite or infinite.

- Such square functions appear in Stein's work (from 60's). He showed that if :
(i) $T: L^{1}(\Omega) \longrightarrow L^{1}(\Omega)$ is a contraction;
(ii) $T: L^{\infty}(\Omega) \longrightarrow L^{\infty}(\Omega)$ is a contraction;
(iii) $T: L^{2}(\Omega) \longrightarrow L^{2}(\Omega)$ is positive in the Hilbertian sense ;
(iv) $T(1)=1$,
then for all $1<p<\infty$, the operator

$$
T: L^{p}(\Omega) \longrightarrow L^{p}(\Omega)
$$

satisfies a square function estimate

$$
\|x\|_{T} \leqslant C_{p}\|x\|_{L^{p}} .
$$

- These operators are the so-called positive Markov operators.
- These square function estimates are related to:
- square functions associated to martingales;
- maximal inequalities.

Reference: E.M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. Math. Studies, Princeton, University Press, 1970.

Stolz domains

For any angle $0<\gamma<\frac{\pi}{2}$, we let B_{γ} be the interior of the convex hull of 1 and of the disc of radius $\sin \gamma$ centered at 0 .

For any function $\varphi: B_{\gamma} \rightarrow \mathbb{C}$, we set

$$
\|\varphi\|_{\infty, B_{\gamma}}=\sup \left\{|\varphi(z)|: z \in B_{\gamma}\right\} .
$$

Main 'commutative' result

Let \mathcal{P} be the algebra of complex polynomials.

Theorem (2010)

For any bounded operator $T: L^{p}(\Omega) \rightarrow L^{P}(\Omega)$, the following assertions are equivalent.
(i) There exists a constant $C>0$ such that

$$
\|x\|_{T} \leqslant C\|x\|_{p} \quad \text { and } \quad\|y\|_{T^{*}} \leqslant C\|y\|_{p^{\prime}}
$$

for any $x \in L^{p}(\Omega)$ and any $y \in L^{p^{\prime}}(\Omega)$.
(ii) There exist an angle $\gamma<\frac{\pi}{2}$ and a constant $K>0$ such that

$$
\forall \varphi \in \mathcal{P}, \quad\left\|\varphi(T): L^{p}(\Omega) \longrightarrow L^{p}(\Omega)\right\| \leqslant K\|\varphi\|_{\infty, B_{\gamma}}
$$

Ritt operators

Let X be a Banach space. We say that $T: X \rightarrow X$ is a Ritt operator if there exist two constants $C_{0}, C_{1}>0$ such that

$$
\begin{gathered}
\forall k \geqslant 0, \quad\left\|T^{k}\right\| \leqslant C_{0} \\
\forall k \geqslant 1, \quad k\left\|T^{k}-T^{k-1}\right\| \leqslant C_{1} .
\end{gathered}
$$

This is equivalent to the 'Ritt condition' :

$$
\sigma(T) \subset \overline{\mathbb{D}}
$$

and there exists $C>0$ such that

$$
\forall \lambda \notin \overline{\mathbb{D}}, \quad\left\|(\lambda-T)^{-1}\right\| \leqslant \frac{C}{|\lambda-1|} .
$$

This implies that

$$
\left.\exists \gamma \in\left(0, \frac{\pi}{2}\right) \right\rvert\, \quad \sigma(T) \subset \overline{B_{\gamma}} .
$$

- For any $\gamma \in\left(0, \frac{\pi}{2}\right)$, there exists a constant $K>0$ such that

$$
k\left|z^{k}-z^{k-1}\right| \leqslant K
$$

for any $z \in B_{\gamma}$ and for all $k \geqslant 1$.

- Therefore the condition
(ii) There exist an angle $\gamma<\frac{\pi}{2}$ and a constant $K>0$ such that

$$
\forall \varphi \in \mathcal{P}, \quad\left\|\varphi(T): L^{p}(\Omega) \longrightarrow L^{p}(\Omega)\right\| \leqslant K\|\varphi\|_{\infty, B_{\gamma}}
$$

implies that :
T is a Ritt operator.

A special class (joint work with Q. Xu)

Theorem (2010)

Let $1<p<\infty$ and let $T: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$ be a positive contraction. If T is a Ritt operator, then there exists a constant $C>0$ such that

$$
\forall x \in L^{p}(\Omega), \quad\left\|\left(\sum_{k=1}^{\infty} k\left|T^{k}(x)-T^{k-1}(x)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}} \leqslant C\|x\|_{L^{p}} .
$$

- This extends Stein's Theorem (on positive Markov operators).
- Since $T^{*}: L^{p^{\prime}}(\Omega) \rightarrow L^{p^{\prime}}(\Omega)$ is also a positive contraction, this implies a B_{γ}-functional calculus.

Application to maximal inequalities

For any $1<p<\infty$ and any $T: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$, set

$$
M_{n}(T)=\frac{1}{n+1} \sum_{k=0}^{n} T^{k}
$$

Theorem (Akcoglu, '75)

If T is a positive contraction, then

$$
\forall x \in L^{p}(\Omega), \quad\left\|\sup _{n \geqslant 0}\left|M_{n}(T) x\right|\right\|_{p} \leqslant C_{p}\|x\|_{p}
$$

Corollary

Let $T: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$ be a positive contraction. If T is a Ritt operator, then there is a constant $K>0$ such that

$$
\forall x \in L^{p}(\Omega), \quad\left\|\sup _{n \geqslant 0}\left|T^{n}(x)\right|\right\|_{p} \leqslant K\|x\|_{p}
$$

Proof (just to understand the role of square functions)

- This goes back to Stein's work on Markov operators.
- By an Abel tranformation,

$$
\sum_{k=1}^{n} k\left(T^{k}-T^{k-1}\right)=n T^{n}-\sum_{k=0}^{n-1} T^{k}
$$

Hence for any $x \in L^{p}(\Omega)$,

$$
\begin{aligned}
T^{n}(x) & =M_{n-1}(T) x+\frac{1}{n} \sum_{k=1}^{n} k\left(T^{k}(x)-T^{k-1}(x)\right) \\
\left|T^{n}(x)\right| & \leqslant\left|M_{n-1}(T) x\right|+\frac{1}{n} \sum_{k=1}^{n} k\left|T^{k}(x)-T^{k-1}(x)\right| \\
& \leqslant\left|M_{n-1}(T) x\right|+\frac{1}{n}\left(\sum_{k=1}^{n} k\right)^{\frac{1}{2}}\left(\sum_{k=1}^{n} k\left|T^{k}(x)-T^{k-1}(x)\right|^{2}\right)^{\frac{1}{2}} \\
& \leqslant\left|M_{n-1}(T) x\right|+\left(\sum_{k=1}^{\infty} k\left|T^{k}(x)-T^{k-1}(x)\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Noncommutative L^{p}-spaces

Let (M, τ) be a von Neumann algebra equipped with a normal semifinite faithful trace.

For any $1 \leqslant p<\infty$, let $L^{p}(M)$ denote the associated noncommutative L^{p}-space.

Any element x of $L^{p}(M)$ is a (possibly unbounded operator) and we set

$$
|x|=\left(x^{*} x\right)^{\frac{1}{2}}
$$

For any $x \in M \cap L^{p}(M)$,

$$
\|x\|_{L^{p}(M)}=\left(\tau\left(|x|^{p}\right)\right)^{\frac{1}{p}}
$$

Square functions on noncommutative L^{p}-spaces

Consider $T: L^{p}(M) \rightarrow L^{p}(M)$ and let $x \in L^{p}(M)$.
If $2 \leqslant p<\infty$ we set

$$
\begin{aligned}
&\|x\|_{T}=\max \left\{\left\|\left(\sum_{k=1}^{\infty} k\left|T^{k}(x)-T^{k-1}(x)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}}\right. \\
&\left.\left\|\left(\sum_{k=1}^{\infty} k\left|\left(T^{k}(x)-T^{k-1}(x)\right)^{*}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}}\right\} .
\end{aligned}
$$

If $1<p \leqslant 2$ we set

$$
\|x\|_{T}=\inf \left\{\left\|\left(\sum_{k}\left|u_{k}\right|^{2}\right)^{\frac{1}{2}}\right\|_{p}+\left\|\left(\sum_{k}\left|v_{k}^{*}\right|^{2}\right)^{\frac{1}{2}}\right\|_{p}\right\}
$$

where the infimum runs over all possible decompositions

$$
u_{k}+v_{k}=k^{\frac{1}{2}}\left(T^{k}(x)-T^{k-1}(x)\right) \quad(k \geqslant 1)
$$

Main noncommutative result

Theorem

Let $T: L^{p}(M) \rightarrow L^{p}(M)$ be a bounded operator, with $1<p<\infty$. The following are equivalent.
(i) There exist an angle $\gamma<\frac{\pi}{2}$ and a constant $K>0$ such that

$$
\forall \varphi \in \mathcal{P}, \quad\left\|\varphi(T): L^{p}(M) \longrightarrow L^{p}(M)\right\| \leqslant K\|\varphi\|_{\infty, B_{\gamma}}
$$

(ii) T is an R-Ritt operator and there exists a constant $C>0$ such that

$$
\|x\|_{T} \leqslant C\|x\|_{L^{p}} \quad \text { and } \quad\|y\|_{T^{*}} \leqslant C\|y\|_{L^{p^{\prime}}}
$$

$$
\text { for any } x \in L^{p}(M) \text { and any } y \in L^{p^{\prime}}(M)
$$

Question

Which Ritt operators $L^{p}(M) \rightarrow L^{p}(M)$ do satisfy the above conditions?

- Positive or completely positive contractions?
- Case when
$T: M \rightarrow M$ and $T: L^{1}(M) \rightarrow L^{1}(M)$ are (complete) contractions
and
$T: L^{2}(M) \rightarrow L^{2}(M)$ is positive in the Hilbertian sense?

Schur multipliers (d'après Junge-LeM-Xu)

Let $T: B\left(\ell^{2}\right) \rightarrow B\left(\ell^{2}\right)$ be a contractive Schur multiplier, given by

$$
\left[c_{i j}\right]_{i, j \geqslant 1} \mapsto\left[t_{i j} c_{i j}\right]_{i, j \geqslant 1}
$$

- For any $1 \leqslant p<\infty$, let S^{p} be the p-Schatten class.
- Then T extends to a contraction $T: S^{p} \rightarrow S^{p}$.

Theorem

Assume that $t_{i j}$ is a nonnegative real number for any $i, j \geqslant 1$.
For any $1<p<\infty$, there exists an angle $\gamma<\frac{\pi}{2}$ and a constant $K>0$ such that

$$
\forall \varphi \in \mathcal{P}, \quad\left\|\varphi(T): S^{p} \longrightarrow S^{p}\right\| \leqslant K\|\varphi\|_{\infty, B_{\gamma}}
$$

Consequently, we have estimates :

$$
\|x\|_{T} \leqslant C\|x\|_{S^{p}}, \quad x \in S^{p}
$$

Noncommutative positive Markov operators (d'après Junge-Ricard-Shlyakhtenko)

We consider (M, τ) with $\tau(1)=1$.
In this case, $M \subset L^{p}(M)$ for any $1 \leqslant p<\infty$.
A linear map $T: M \rightarrow M$ is called a Markov operator if
(i) T is completely positive.
(ii) T is unital, i.e. $T(1)=1$.
(iii) T is trace preserving, i.e. $\tau \circ T=\tau$.

Then for any $1 \leqslant p<\infty$, such an operator (uniquely) extends to a contraction

$$
T_{p}: L^{p}(M) \longrightarrow L^{p}(M)
$$

We say that T is selfadjoint (resp. positive) if moreover T_{2} is selfadjoint (resp. positive in the Hilbertian sense).
If T is a selfadjoint Markov operator, then T^{2} is a positive Markov operator.

Noncommutative positive Markov operators (continued)

Theorem

Let $T: M \rightarrow M$ be a positive Markov operator.
For any $1<p<\infty$, there exists an angle $\gamma<\frac{\pi}{2}$ and a constant $K>0$ such that

$$
\forall \varphi \in \mathcal{P}, \quad\left\|\varphi\left(T_{p}\right): L^{p}(M) \longrightarrow L^{p}(M)\right\| \leqslant K\|\varphi\|_{\infty, B_{\gamma}} .
$$

Consequently, we have estimates:

$$
\|x\|_{T_{p}} \leqslant C\|x\|_{L^{p}}, \quad x \in L^{p}(M)
$$

This is based on :

- A recent work of Junge-Ricard-Shlyakhtenko showing that for T as above, then

$$
e^{-t\left(I-T_{p}\right)}: L^{p}(M) \longrightarrow L^{p}(M)
$$

is factorizable for any $t \geqslant 0$;

Noncommutative loose dilations

Let $1<p<\infty$ and let $T: L^{p}(M) \rightarrow L^{p}(M)$.
We say that T admits a loose dilation if there is another von Neumann algebra N, a surjective isometry $U: L^{P}(N) \rightarrow L^{P}(N)$ and two bounded operators

$$
J: L^{p}(M) \rightarrow L^{p}(N) \quad \text { and } \quad Q: L^{p}(N) \rightarrow L^{p}(M)
$$

such that

$$
T^{n}=Q U^{n} J
$$

for any $n \geqslant 0$.

A square function characterization (joint work with C. Arhancet)

Theorem

Let $1<p<\infty$ and let $T: L^{p}(M) \rightarrow L^{p}(M)$ be an R-Ritt operator. The following assertions are equivalent.
(i) T admits a noncommutative loose dilation.
(ii) There exists a constant $C>0$ such that

$$
\|x\|_{T} \leqslant C\|x\|_{L^{p}} \quad \text { and } \quad\|y\|_{T^{*}} \leqslant C\|y\|_{L^{p^{\prime}}}
$$

$$
\text { for any } x \in L^{p}(M) \text { and } y \in L^{p^{\prime}}(M) \text {. }
$$

An alternative square function ($p<2$)

For any $1<p<\infty$, for any $T: L^{p}(M) \rightarrow L^{p}(M)$ and for any $x \in L^{p}(M)$, set :

$$
\|x\|_{T, c}=\left\|\left(\sum_{k=1}^{\infty} k\left|T^{k}(x)-T^{k-1}(x)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}}
$$

and

$$
\|x\|_{T, r}=\left\|\left(\sum_{k=1}^{\infty} k\left|\left(T^{k}(x)-T^{k-1}(x)\right)^{*}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}}
$$

Assume that $1<p<2$ and set

$$
\|x\|_{T, r+c}=\inf \left\{\left\|x_{1}\right\|_{T, c}+\left\|x_{2}\right\|_{T, r}: x=x_{1}+x_{2}\right\} .
$$

Then we formally have

$$
\|x\|_{T} \leqslant\|x\|_{T, r+c} .
$$

An alternative square function (continued)

Indeed if $x=x_{1}+x_{2}$, then for any $k \geqslant 1$,

$$
k^{\frac{1}{2}}\left(T^{k}(x)-T^{k-1}(x)\right)=u_{k}+v_{k}
$$

with

$$
u_{k}=k^{\frac{1}{2}}\left(T^{k}\left(x_{1}\right)-T^{k-1}\left(x_{1}\right)\right) \quad \text { and } \quad v_{k}=k^{\frac{1}{2}}\left(T^{k}\left(x_{2}\right)-T^{k-1}\left(x_{2}\right)\right)
$$

- What about a converse estimate?
- When do we have an estimate

$$
\|x\|_{T, r+c} \leqslant C\|x\|_{L^{p}} ?
$$

Positive results (by C. Arhancet)

Theorem

Let $T: L^{p}(M) \rightarrow L^{p}(M)$ be a Ritt operator, with $1<p<2$. Assume that there exists an angle $\gamma<\frac{\pi}{2}$ and a constant $K>0$ such that

$$
\forall \varphi \in \mathcal{P}, \quad\left\|\varphi(T): L^{P}(M) \longrightarrow L^{P}(M)\right\|_{c b} \leqslant K\|\varphi\|_{\infty, B_{\gamma}} .
$$

Then there exists a constant $C>0$ such that

$$
\|x\|_{T, r+c} \leqslant C\|x\|_{L^{p}}, \quad x \in L^{p}(M)
$$

That is, any $x \in L^{P}(M)$ has a decomposition $x=x_{1}+x_{2}$ in $L^{p}(M)$ with

$$
\begin{aligned}
& \left\|\left(\sum_{k=1}^{\infty} k\left|T^{k}\left(x_{1}\right)-T^{k-1}\left(x_{1}\right)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}} \leqslant C\|x\|_{L^{p}} \\
& \left\|\left(\sum_{k=1}^{\infty} k\left|\left(T^{k}\left(x_{2}\right)-T^{k-1}\left(x_{2}\right)\right)^{*}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}} \leqslant C\|x\|_{L^{p}} .
\end{aligned}
$$

and

Conclusion

The above 'completely bounded functional calculus property' and hence the resulting square function estimate hold for :

- Contractive positive Schur multipliers;
- Positive Markov operators.

