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1. Introduction

In the early 1960’s the following simple setting describing a large class of function

algebras exhibiting H∞-like behaviour, was isolated:

Let X be a probability space, and let A be a weak* closed unital-subalgebra of

L∞(X), such that:

(1)

∫
fg =

∫
f

∫
g, f, g ∈ A.

(Here the given measure on X is the representing measure of the multiplicative

functional f →
∫
f on A.)

Write [S]p for the closure of a set S ⊂ Lp in the p-norm. For an algebra of the above

type we formally define Hp = [A]p. Letting A0 = {f ∈ A :
∫
f = 0}, we similarly

define Hp
0 = [A0]p.
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Theorem 1.1. For such A, t.f.a.e.:

(i) A + Ā is weak* dense in L∞(X).

(ii) A is ‘logmodular’: if b ∈ L∞(X) with b >> 0 then b is a uniform limit of

terms of the form |a|2 for an invertible a ∈ A.

(iii) Szegö’s formula: ∀g ∈ L1
+(X), exp

∫
log g = inf{

∫
|1−f |2g : f ∈ A,

∫
f = 0}.

(iv) Beurling-Nevanlinna factorization: Every f ∈ L2(X) such that f /∈ [fA0]2

has an ‘inner-outer factorization’ f = uh, with u unimodular and h ∈ [A]2

such that 1 ∈ [hA]2.

(v) Riesz-Szegö theorem: For any 0 < p ≤ ∞ and f ∈ Lp, we have
∫

log |f |dm >

−∞ iff f = uh for some unimodular function u ∈ L∞ and outer element

h ∈ Hp. (Here outer means the closure in Lp of hA is all of Hp.)

The algebras described by the above theorem are the so-called weak*-Dirichlet al-

gebras. The theory of these algebras goes on to show that the weak* Dirichlet algebras

mirror many properties of classical H∞.
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The noncommutative framework:

Lp,L∞ : We assume that M is a von Neumann algebra possessing a faithful normal

tracial state τ . (So τ is a weak*-continuous positive linear functional for which x = 0

whenever τ (x∗x) = 0, and τ (xy) = τ (yx) for all x, y ∈ M .) Such algebras will be

refered to as finite von Neumann algebras.

For such von Neumann algebras we may define the noncommutative Lp(M) spaces

as the completion of M under the (p)-norm ‖ · ‖ = τ (| · |p)1/p.

Conditional Expectation: For any von Neumann subalgebra N of such an M ,

there also exists a weak*-continuous contractive projection Ψ : M → N satisfying

τ ◦Ψ = τ . (The so-called faithful normal conditional expectation onto N with respect

to τ .)
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Defining H∞: A tracial subalgebra of M is a weak* closed unital subalgebra A of

M such that the trace preserving faithful normal conditional expectation Φ : M →
A ∩ A∗ = D satisfies:

(2) Φ(a1a2) = Φ(a1) Φ(a2), a1, a2 ∈ A.

If D = A ∩ A∗ is one dimensional, we call A antisymmetric.

A tracial subalgebra is said to be a finite maximal subdiagonal algebra of M , if

A + A∗ weak* dense in M . (These are our noncommutative H∞’s.)

For these algebras essentially the same set of equivalences as in the classical case

(with some fascinating diversification of structure here and there) pertains.



6 LOUIS LABUSCHAGNE AND QUANHUA XU

Theorem 1.2. For a tracial subalgebra A of M , the following conditions are

equivalent:

(i) A is maximal subdiagonal: A + A∗w∗ = M .

(ii) A is logmodular: if b ∈ M+ is invertible then b is a uniform limit of terms

of the form a∗a for invertible a ∈ A.

(iii) A satisfies a Szegö-like formula formulated in terms of the Fuglede-Kadison

determinant.

(iv) Beurling-Nevanlinna-like factorization property.

(v) A Riesz-Szegö theorem for elements of L2(M).

Emergent meta-theorem: The classical theory of Hp-spaces is far more alge-

braic in nature than anticipated.
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Set A0 = A∩Ker(Φ). For maximal subdiagonal algebras the analogue of Hp is [A]p,

the closure of A in the noncommutative Lp space Lp(M), for p ≥ 1. We write Hp
0 (M)

for [A0]p.

As in the classical case, whenever 1 < p < ∞ we here too have that the spaces

Hp(M) and Lp(D) satisfy the complementation property Lp(M) = Hp
0 (M)⊕Lp(D)⊕

Hp
0 (M)∗ where Hp(M) = Hp

0 (M) ⊕ Lp(D). For the case p = 2 this is easy to see.

The fact that τ ◦ Φ = τ ensures A0, D and A∗
0 are mutually orthogonal with respect

to the inner product 〈a, b〉 = τ (a∗b). It is then a matter of using the weak* density of

A + A∗ to see that H2
0(M)⊕ L2(D)⊕H2

0(M)∗ is all of L2(M).
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Some examples of such algebras include

(1) All the classical weak*-Dirichlet algebras;

(2) Upper triangular matrices in Mn(C) with Φ the projection onto the diagonal

matrices, and τ = 1
nTr;

(3) (Arveson) Let G be a countable discrete group with a linear ordering invariant

under left multiplication. The subalgebra generated by G+ in the group von

Neumann algebra of G is a subdiagonal algebra.
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2. Toeplitz operators with noncommuting symbols

We briefly review some of the contributions of Marsalli and West [IEOT, 1998] on

this topic.

Given a ∈M we may define the left multiplication operator

La : L2(M) → L2(M) : b 7→ ab.

Now let P denote the orthogonal projection on L2(M) mapping onto H2(M) and

along H2
0(M)∗. If we restrict La to H2(M) and then compose the result with P , we

get the so-called Toeplitz operator on H2(M) with symbol a, namely

Ta : H2(M) → H2(M) : b 7→ P (ab).

It is a simple matter to see that

‖Ta‖ ≤ ‖La‖ = ‖a‖∞.
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Given a, b ∈M it is a simple matter to see that LaLb = Lab. Without some additional

assumptions, the same formula is however not always valid for Toeplitz operators. The

following result holds:

Proposition 2.1. Let a, b ∈M be given. If either b ∈ A = H∞(M) or a ∈ A∗ =

H∞(M)∗, we get that TaTb = Tab.

The following important result may also be found in the paper of Marsalli and West:

Theorem 2.2 (Noncommutative Hartman-Winter spectral inclusion). For any a ∈
M we have that σ(a) = σ(La) ⊂ σ(Ta).
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Challenge: With a respectable theory of noncommutative Hp spaces in place and

an established concept of Toeplitz operators for this framework, the challenge we now

face is the following question. Can we as in the classical setting give a structural

characterisation of those symbols a for which Ta is an invertible operator?
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3. Devinatz’s classical result

In the context of the classical H2(T) space, Allen Devinatz established the following

elegant characterisation of invertible Toeplitz operators around 1964.

Theorem 3.1. Given f ∈ L∞(T), the Toeplitz operator Tf is invertible if and

only the following conditions hold:

• ess inf|f | > 0;

• there exists a g ∈ H∞ ∩ (H∞)−1 and some ε > 0 so that |Arg(gf)| ≤ π
2 − ε.

His strategy was to first reduce the problem to one of describing those unitaries u in

L∞ for which the Tu is invertible, by means of the following result:

Theorem 3.2. Given f ∈ L∞(T), let f = u|f | be the polar decomposition of f .

The Toeplitz operator Tf is invertible if and only the following conditions hold:

• ess inf|f | > 0;

• Tu is invertible;

• u is of the form h/h for some h with h, 1/h ∈ H2.
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Given some w ∈ L1(T)+ we may write L2(w) for the Hilbert space generated by

means of the (semi-) inner product 〈f, g〉w =
∫

T gfw dm. (As usual we of course

reduce to equivalence classes in the case where ‖ · ‖w turns out to be a seminorm.)

The closures of H∞(T) and H∞
0 (T) in the ‖ · ‖w norm will be denoted by H2(w)

and H2
0(w). The angle between these closed subspaces of L2(w) is defined to be

arccos ρ

where ρ is given by

ρ = sup{|〈f, g〉w| : f ∈ A0, g ∈ A∗, ‖f‖w ≤ 1, ‖g‖w ≤ 1}.
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For these spaces to be at a positive angle, we need to have that 0 ≤ ρ < 1. It is

not too difficult to show that requiring ρ < 1 is equivalent to requiring the existence

of some K > 1 for which

‖f‖2
w + ‖g‖2

w ≤ K‖f + g‖2
w

(Simply setK = (1−ρ)−1.). Hence positivity of the angle ensures thatH2(w)+H2
0(w)

is a Banach space direct sum of H2(w) and H2
0(w).

To any function f ∈ <(H∞) we may associate a uniquely determined function f̃ for

which f + if̃ ∈ H∞ and
∫

T f̃ dm = 0. The map f → f̃ is called the (harmonic)

conjugation map. It is not difficult to extend this to a map on <(H∞) + i<(H∞).

Theorem 3.3. Given a finite Borel measure µ on T, the spaces H2(µ) and H2
0(µ)

are at a positive angle (with respect to µ) if and only if the conjugation map f → f̃

(f a trigonometric polynomial) is bounded in L2(T, µ) norm.
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Using these ideas the required description of the unitaries for which Tu is invertible,

was achieved by Devinatz in the following result:

Theorem 3.4. Let u ∈ L∞(T) be a unitary of the form u = h/h for some h with

h, 1/h ∈ H2, and write w = |h|2. Then Tu is invertible if and only if the spaces

H2(w) and H2
0(w) are at a positive angle.

Although thus far we have much evidence to indicate the importance of measures for

which H2(µ) and H2
0(µ) are at a positive angle, we still have no structural information

regarding these measures. For this we need the very remarkable Helson-Szegö theorem:

Theorem 3.5 (Helson-Szegö). Let µ be a finite positive measure on T with Lebesgue

decomposition dµ = wdm + dµs. Then H2(µ) and H2
0(µ) are at a positive angle

if and only if µs = 0 and w ∈ L1(T) is of the form log(w) = a + b̃ for some

a, b ∈ L∞(T) with ‖b‖∞ < π
2 .
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4. Pousson’s contribution

As in the setting of Devinatz, L∞ and H2 will here denote the classical spaces L∞(T)

and H2(T).

The context: Given some F = [fij] ∈Mn(L
∞) we may define an associated Toeplitz

operator on the column space Mn,1(H
2) = Cn(H

2), by setting TF ([ak]) = P ([fij][ak])

where P is the orthogonal projection of Cn(L
2) onto Cn(H

2).

Similar to Devinatz, Pousson reduced the characterisation of invertibility to the case

of unitary elements of Mn(L
∞) by means of the following result:

Theorem 4.1. Given F = [fij] ∈Mn(L
∞), TF is invertible if and only if F admits

of a factorisation F = UK where U ∈ Mn(L
∞) is unitary, K ∈ Mn(H

∞) outer,

and both TU and TK invertible. In this case we have that ess inf| det(F )| > 0.
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The characterisation of the unitaries U ∈Mn(L
∞) for which TU is invertible, follows

from a combination of the following two facts:

Theorem 4.2. Let U ∈Mn(L
∞) be a unitary.

(1) If TU is invertible, it is of the form U = G∗
0G1 where G0, G

−1
0 , G1 and G−1

1

all belong to Mn(H
2) and G1G

∗
1 = (G0G

∗
0)
−1.

(2) For any unitary U ∈ Mn(L
∞) of the above form, TU is invertible if and

only if the subspaces Mn(H
2)(W ) and Mn(H2

0)(W ) are at a positive angle,

where W = G0G
∗
0. (Here Mn(H

2)(W ) the closure of Mn(H
∞) in Mn(L

2)(W )

where Mn(L
2)(W ) is constructed using an inner product suitably weighted

with W .)
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Remark 4.3 (Deconstructing Helson-Szegö). Suppose we are given some w ∈
L1(T)+ for which the spaces H2(w) and H2

0(w)are at a positive angle.

• The first step is to show that then
∫

log(w) dm > −∞, which enables us to

apply the classical Riesz-Szegö theorem to obtain a factorisation of the form

w = uh for some unimodular function u ∈ L∞ and outer element h ∈ H1.

• Using this factorisation the outerness of h and a judicious use of duality,

enables one to show that quantity ρ = sup{|〈f, g〉w| : f ∈ A0, g ∈ A∗, ‖f‖w ≤
1, ‖g‖w ≤ 1} may be identified with ρ = infg∈H∞ ‖u− g‖∞.

• To the above fact one now applies the following elegant lemma:

For a real-valued measurable function ψ, infg∈H∞ ‖e−iψ− g‖∞ < 1 if and only if

there exists an ε > 0 and a k0 ∈ H∞ so that |k0| ≥ ε a.e. with |ψ + arg(k0)| ≤
π
2 − ε. The operators a and b in the formulation of the Helson-Szegö theorem

then correspond to a = − log |k0| and b = −ψ − arg(k0)
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Proposition 4.4 (Mildly noncommutative Helson-Szegö). Given W ∈Mn(L1)
+ for

which log(det(W )) is summable, there exists outer elements A,B ∈Mn(H
2) with

W = AA∗ = B∗B. The subspaces Mn(H
2)(W ) and Mn(H2

0)(W ) are then at a

positive angle if and only if for the unitary U = B−1A∗ = B∗A−1 we can find a

G ∈Mn(H
∞) and an α > 0 such that

α +G∗G ≤ U ∗G +G∗U.

How about the passage to subdiagonal algebras? Can the above approach carry

over? In passing to the von Neumann algebra context we do not only have “stronger”

noncommutativity, but also incur a further significant complication which is that in-

stead of the very nice situation of having H∞(D) ∩ H∞(D) = C1l, the intersection

H∞(M) ∩H∞(M)∗ = D can be highly non-trivial!!
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5. Prelude to the noncommutative result (outers and peak sets)

Definition 5.1 (Noncommutative geometric mean). On any finite von Neumann

algebra with faithful normal tracial state τ , the Fuglede-Kadison determinant is

defined by setting

∆(a) = exp τ (log(|a|))

if a ∈M is invertible, with

∆(a) = inf
ε>0

exp τ (log(|a| + ε1))

otherwise. (The definition extends to include all the Lp(M)’s (p > 0). Brown

1986; Haagerup-Schultz 2006)

Many important classical formulae can be expressed in this context using this de-

terminant. For example the Jensen inequality (valid for any p > 0) reads that

∆(a) ≥ ∆(Φ(a)) for all a ∈ Hp(M).
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Theorem 5.2. (Noncommutative Verblunsky/Kolmogorov-Krein)

Let ω be a positive linear functional on M , and let ωn = τ (h · ) (h ∈ L1(M)+)

and ωs be its normal and singular parts respectively. Then

∆(h) = inf{ω(|a|2) : a ∈ A,∆(Φ(a)) ≥ 1}.

The infimum remains unchanged if we also require a to be invertible in A.

(BL initially proved this for the case dim(D) < ∞. Later Bekjan and Xu managed

to remove this restriction.)
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Recall that

• an element h ofHp(M) (p ≥ 1) is said to be an outer function if [hA]p = Hp(M),

and strongly outer if in addition ∆(h) > 0.

We assume p ≥ 1 throughout the rest of this section. By using the generalised

Jensen inequality, the Szegö formula and the observation that h ∈ Hp(M) is outer iff

1 ∈ [hA]p, we can now prove the following:

Theorem 5.3 (Characterisation of outers). Let A be a subdiagonal algebra, let

1 ≤ p ≤ ∞ and h ∈ Hp. If h is outer then ∆(h) = ∆(Φ(h)). If ∆(h) > 0, this

condition is also sufficient for h to be outer.
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With some delicate analysis, a Helson-Lowdenslager type trick, and a sharpening of

the known Riesz factorization results for subdiagonal algebras, one can now prove a

noncommutative version of the famous Riesz-Szegö theorem.

Theorem 5.4 (Noncommutative Riesz-Szegö). If A is a maximal subdiagonal al-

gebra, and f ∈ Lp(M) then ∆(f ) > 0 iff f = uh for a unitary u and an outer

h ∈ Hp with positive determinant. Moreover, this factorization is unique up to a

unitary in D.
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The classical peak-set theorem for the disc algebra runs as follows:

Theorem 5.5. Let E ⊂ T be a compact subset. Then m(E) = 0 if and only if

E is a peak set for A0(D) (i.e. there exists f ∈ A0(D) with f = 1 on E, and

|f (z)| < 1 on D\E.)

A very useful consequence of the peak set theorem states that if µ is a finite complex

Borel measure on T which is singular with respect to m, then there exists analytic

polynomials pn such that

• |pn(z)| ≤ 1 whenever |z| ≤ 1,

• pnµ→ ‖µ‖,
• pn → 0 m-ae.



THE INVERTIBILITY OF TOEPLITZ OPERATORS WITH NONCOMMUTING SYMBOLS 25

A faithful noncommutative version of the peak-set for subdiagonal algebras, is too

much to hope for. However recently (ArXiV: 2008) Ueda proved a very respectable

noncommutative version of the previously mentioned consequence:

Theorem 5.6. Let A be a finite maximal subdiagonal subalgebra of M , and ω

a nonzero singular functional on M . Then we can find a contractive element

a ∈ A, and a projection p ∈M ?? so that

• an converges to p in the σ(M ??,M ?)-topology as n→∞;

• p(|ω|) = |ω|(1l);
• an converges to 0 in the σ(M,M ?)-topology as n→∞.



26 LOUIS LABUSCHAGNE AND QUANHUA XU

6. A noncommutative Helson-Szegö theorem

Given a state ω, we define the angle between the spaces A∗ and A0 to be arccos ρ

where

ρ = sup{|ω(b∗a)| : a ∈ A0, b ∈ A∗, ω(|a|2) ≤ 1, ω(|b|2) ≤ 1}.

In general 0 ≤ ρ ≤ 1.

We can express this in Hilbert space language by looking at the Hilbert space hω =

L2(ω) constructed in the GNS construction for ω. The subspaces A∗ and A0 embed

canonically into L2(ω) by means of the operation a → πω(a)Ωω. The angle between

A∗ and A0 as defined above, is then the same as the angle between the closed subspaces

πω(A∗)Ωω and πω(A0)Ωω of L2(ω). Specifically

ρ = sup{|〈πω(a)Ωω, πω(b)Ωω〉| : a ∈ A0, b ∈ A∗, ‖πω(a)Ωω‖ ≤ 1, ‖πω(b)Ωω‖ ≤ 1}.
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Proposition 6.1. Let D = A∩A∗ be finite dimensional, and let ω be a state for

which ρ < 1. Then ω is of the form ω = τ (g·) for some g ∈ L1
+(M).

Proof. It is not too difficult to show that ρ = 1 if πω(A0)Ωω ∩ πω(A∗)Ωω 6= {0}.
Hence suppose that ωs 6= 0 and that

πω(A0)Ωω ∩ πω(A∗)Ωω = {0}.

Select an orthogonal projection p in M ?? and a ∈ A with ‖a‖ ≤ 1 so that

• an converges to p in the weak*-topology on M ??;

• ωs(p) = ωs(1l) (here ωs is identified with its canonical extension to M ??);

• an converges to 0 in the weak*-topology on M .

Since the expectation Φ is weak*-continuous on M , Φ(an) is weak* convergent to 0.

But then the finite dimensionality of D ensures that Φ(an) converges to 0 in norm.
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By the Riesz representation theorem there exists some xp ∈ hω so that

p(〈·, η〉) = 〈xp, η〉 for every η ∈ hω.

There exists a central projection p0 in πω(M)′′ for which (p0πω, p0hω, p0Ωω) and ((1l−
p0)πω, (1l − p0)hω, (1l − p0)Ωω) are respectively copies of the GNS representations of

ωn and ωs. The bullets above, then translate to the statements that

• πω(an)Ωω converges to xp in the weak-topology on hω;

• 〈xp, (1l− p0)Ωω〉 = ωs(1l).

• xp ∈ πω(A0)Ωω

By verifying and using the fact that (a∗)n also converges to p, we may now conclude

that

xp ∈ πω(A∗)Ωω ∩ πω(A0)Ωω = {0}.

But if ωs 6= 0, this would contradict the second bullet! Therefore ωs = 0. �
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The support projection of any self-adjoint element f of M̃ will be denoted by s(f ).

Lemma 6.2. For any g ∈ L1
+(M) we have that

s(Φ(g)) ≥ s(g).

Lemma 6.3. Let e be a non-zero projection in D. Then eAe is a finite maxi-

mal subdiagonal subalgebra of eMe (equipped with the trace τe(·) = 1
τ(e)τ (·)) with

diagonal eAe ∩ (eAe)∗ = eDe.

Definition 6.4. Adopting the notation of the previous two lemmas, given a non-

zero element g ∈ L1
+(M), we define ∆Φ(g) to be the determinant of sΦgsΦ regarded

as an element of (sΦMsΦ, τs(Φ(g)))

Proposition 6.5. Let D = A∩A∗ be finite dimensional, and let g ∈ L1
+(M) be a

norm-one element for which the state ω = τ (g·) satisfies ρ < 1. Then ∆Φ(g) > 0.
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Proof. Assuming that s(Φ(g)) = 1l, we suppose by way of contradiction that ∆(g) = 0.

By the Szegö formula for subdiagonal algebras we then have that

0 = ∆(g) = inf{τ (g|a− d|2) : a ∈ A0, d ∈ D,∆(d) ≥ 1}.

Thus there exist sequences {an} ⊂ A0 and {dn} ⊂ D with ∆(dn) ≥ 1 for all n, so

that

τ (g|an − dn|2) → 0 as n→∞.

Now reduce to the case where the dn’s are positive and invertible.

Next consider d̃n = 1
‖dn‖dn and ãn = 1

‖dn‖an and conclude from the above that

πg(d̃n) → πg(d̃0) 6= 0

and

‖πg(ãn)− πg(d̃0)‖ → 0.

This ensures that πg(A0) ∩ πg(A∗), and hence that ρ = 1. �
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Significance: Knowing that ω must be of the form τ (g·) with ∆Φ(g) > 0 whenever

ρ < 1, gives us access to the all-important Riesz-Szegö theorem.

Still to do: Characterise those normal states ω = τ (g·) for which ∆Φ(g) > 0 and

ρ < 1.

Theorem 6.6. Let g ∈ L1
+(M) be given with ‖g‖1 = 1, and denote s(Φ(g)) by sΦ.

For the state ω = τ (g·), the two conditions ρ < 1 and ∆Φ(g) > 0 hold if and only

if the following two conditions hold:

• there exists a unitary u in sΦMsΦ, and outers hL, hR ∈ H2(sΦMsΦ), such

that g = hRuhL = |hL|2 = |h∗R|2;
• for some k0 ∈ sΦAsΦ and some 0 < α ≤ 1 we have αsΦ + |k0|2 ≤ u∗k0 + k∗0u.

(As demonstrated earlier, if D is finite dimensional, then in the above equivalence

we may dispense with the restrictions that ω is normal, and that ∆Φ(g) > 0.)
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Proof. Without loss of generality assume that sΦ(g) = 1l. We prove only the “only if”

part. Let g satisfy the conditions ρ < 1 and ∆(g) > 0. Since ∆(g1/2) = ∆(g)1/2 > 0,

the noncommutative Riesz-Szegö theorem ensures that there exists outer elements

hL, hR ∈ H2(M) and unitaries vL, vR ∈M for which

g1/2 = v∗LhL = hRv
∗
R g1/2 = |hL| = |h∗R|.

For any a ∈ A0, b ∈ A∗ we have 〈πg(a)Ωg, π(b)Ωg〉 = τ (gb∗a) = τ (v∗Rv
∗
LhLb

∗ahR). So

ρ = sup{|τ (gb∗a)| : a ∈ A0, b ∈ A∗, τ (g|a|2) ≤ 1, τ (g|b|2) ≤ 1}

= sup{|τ (v∗Rv
∗
LhLb

∗ahR)| : a ∈ A0, b ∈ A∗, τ (|ahR|2) ≤ 1, τ (|hLb∗|2) ≤ 1}

= sup{|τ (v∗Rv
∗
Lf1f2)| : f1 ∈ H2(M), f2 ∈ H2

0(M), ‖f1‖2 ≤ 1, ‖f2‖2 ≤ 1}

= sup{|τ (v∗Rv
∗
LF )| : F ∈ H1

0(M), ‖F‖1 ≤ 1}.

(In the above computation f1 and f2 are approximated by hLb
∗ and ahR respectively.)
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By duality we now have that

ρ = inf{‖v∗Rv∗L − k‖∞ : k ∈ sΦAsΦ}.

Hence ρ < 1 if and only if there exists k0 ∈ A so that

1 > ‖v∗Rv∗L − k0‖∞ = ‖1l− vRk0vL‖∞.

This last property can now be translated to the the required conclusion. �

A different translation of the property verified above yields the following variant:

Theorem 6.7. Let g ∈ L1
+(M) be given with ‖g‖1 = 1, and denote s(Φ(g)) by sΦ.

Consider the state ω = τ (g·). If ∆Φ(g) > 0, then for ω = τ (g·) we have

ρ < 1 ⇔ g = hRbghL + ag

where

ag ∈ H1(M); bg ∈M ; hR, hL ∈ L2(M) with ‖bg‖∞ < 1; |hL|2, |h∗R|2 ≤ g.

We may choose hR, hL to be strongly outer with g = |hL|2 = |h∗R|2.
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7. Invertibility of Toeplitz operators

Theorem 7.1. Let a ∈ M be given. A necessary and sufficient condition for Ta

to be invertible is that it can be written in the form a = uk where k ∈ A−1, and

u ∈M is a unitary for which Tu is invertible.

Suppose that a ∈ M is indeed of the form a = uk where k ∈ A−1, and u ∈ M is

a unitary. It is a simple exercise to see that then Tk is invertible with inverse Tk−1.

Since we then have that TaTk−1 = Tu and TuTk = Ta, it is clear that Ta will then

be invertible if and only if Tu is invertible. Thus to fully characterise invertibility of

Toeplitz operators, we still need to characterise invertibility of Toeplitz operators with

unitary symbols.



THE INVERTIBILITY OF TOEPLITZ OPERATORS WITH NONCOMMUTING SYMBOLS 35

Proof. We outline the proof of necessity.

• Ta to be invertible means there exists g ∈ H2(M) so that Tag = 1l. Equivalently

there exists some h ∈ H2
0(M) so that ag = 1l + h∗.

• Now use the generalised Jensen inequality to see that ∆(ag) ≥ ∆(1l) = 1 and

hence that ∆(|a|1/2) > 0.

• Now use the noncommutative Riesz-Szegö theorem to find an outer element f ∈
H2 with |f |2 = |a|.

• The tricky part of the proof is to now show that Tf is actually invertible. From

this and the Hartmann-Winter spectral inclusion one can then deduce that |a|
is strictly positive. Applying Arveson’s factorisation theorem then proves the

result.

�
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Lemma 7.2. Let u ∈M be a unitary. A necessary condition for Tu to be invert-

ible is that it is of the form u = (g∗1)
−1dg−1

0 where g0, g1 are strongly outer elements

of H2(M) and d a strongly outer element of L2(D) related by the conditions that

d = Φ(g0) = Φ(g∗1), dg−1
0 , d∗g−1

1 ∈ H2(M) and g∗0g0 = d∗(g∗1g1)
−1d.

Proof. We again outline the proof.

• Using the invertibility of Tu and Tu∗, we select g0, g1 ∈ H2(M) so that Tug0 =

1l = Tu∗g1, or equivalently ug0 = 1l + h∗0 and u∗g1 = 1l + h∗1.

• Now use the generalised Jensen inequality to conclude from these equalities that

∆(g0),∆(g1) > 0. This ensures that g0 and g1 are each unitarily equivalent to an

outer element. The challenge is to show that they are actually outer themselves.

This proves to be a very non-trivial exercise which uses the full scope of the

characterisation of outers achieved thus far.

• The final challenge is to show that g∗1ug0 is actually uniformly bounded and

belongs to D. Setting d = g∗1ug0 then proves the result.

�
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Lemma 7.3. Let u ∈M be unitary of the form described in the previous lemma.

Then Tu is invertible if and only if A∗ and A0 are at a positive angle to each

other with respect to the functional τ (w·), where w = g∗0g0 = d∗(g∗1g1)
−1d.

If we further combine the above lemma with the noncommutative Helson-Szegö theo-

rem, we end up with the required structural characterisation of the symbols of invertible

Toeplitz operators.

Theorem 7.4. Let u ∈M be unitary of the form described in the previous lemma.

Then Tu is invertible if and only if there exists a k ∈ A and some 0 < α ≤ 1 with

α + |k|2 ≤ u∗k + k∗u.


