Sofic entropy via finite partitions

David Kerr

Texas A&M University

June 6, 2012

Shannon entropy

The Shannon entropy of a partition \mathcal{P}

of a probability space (X, μ) is defined as

$$H(\mathcal{P}) = -\sum_{i=1}^{n} \mu(P_i) \log \mu(P_i),$$

which can be viewed as the integral of the information function

$$I(x) = -\log \mu(P_i)$$

where *i* is such that $x \in P_i$.

Kolmogorov-Sinai entropy

For a single measure-preserving transformation $T: X \rightarrow X$ we set

$$h_{\mu}(T, \mathfrak{P}) = \lim_{n \to \infty} \frac{1}{n} H(\mathfrak{P} \vee T^{-1} \mathfrak{P} \vee \cdots \vee T^{-n+1} \mathfrak{P})$$

 $h_{\mu}(T) = \sup_{\mathfrak{P}} h_{\mu}(T, \mathfrak{P}).$

Kolmogorov-Sinai theorem

If \mathfrak{P} is a finite generating partition then $h_{\mu}(\mathcal{T}) = h_{\mu}(\mathcal{T}, \mathfrak{P})$.

As a consequence, the entropy of the Bernoulli shift on $(X_0, \mu_0)^{\mathbb{Z}}$ is equal to the Shannon entropy of the base.

Theorem (Ornstein)

Bernoulli shifts are classified by their entropy.

This theory applies most generally to amenable acting groups.

Bowen's measure entropy

Basic idea

Replace internal averaging (information theory) by the counting of discrete models (statistical mechanics).

Let \mathcal{P} be a partition of X whose atoms have measures c_1, \ldots, c_n . In how many ways can we approximately model this ordered distribution of measures by a partition of $\{1, \ldots, m\}$ for a given $m \in \mathbb{N}$? By Stirling's formula, the number of models is roughly

$$c_1^{-c_1m}\cdots c_n^{-c_nm}$$

for large m, so that

$$rac{1}{m}\log(\# ext{models}) pprox - \sum_{i=1}^n c_i \log c_i = H(\mathcal{P}).$$

Bowen's measure entropy

Let $G \curvearrowright (X, \mu)$ be a measure-preserving action, and let Σ be a sequence of maps $\sigma_i : G \to \text{Sym}(m_i)$ into finite permutation groups which are asymptotically multiplicative and free (the existence of such a sequence defines a **sofic** group).

Let \mathcal{P} be a finite ordered partition of X. For a finite set $F \subseteq G$ and $\varepsilon > 0$ we write $AP(\mathcal{P}, F, \varepsilon, \sigma_i)$ for the number of ordered partitions Ω of $\{1, \ldots, m_i\}$ such that the measures of the atoms of $\bigvee_{s \in F} s^{-1}\mathcal{P}$ and $\bigvee_{s \in F} s^{-1}\Omega$ which correspond to each other under the dynamics are summably ε -close. Set

$$h_{\Sigma,\mu}(\mathcal{P}) = \inf_{F} \inf_{\varepsilon > 0} \limsup_{i \to \infty} \frac{1}{m_i} \log \# \mathsf{AP}(\mathcal{P}, F, \varepsilon, \sigma_i)$$

Theorem (Bowen)

 $h_{\Sigma,\mu}(\mathcal{P})$ has a common value for generating partitions \mathcal{P} .

Linear reformulation

On the set of unital positive maps $L^{\infty}(X,\mu) \to \mathbb{C}^{m_i}$ we define the pseudometric

$$\rho_{\mathcal{P}}(\varphi,\psi) = \max_{f\in\mathcal{P}} \|\varphi(f) - \psi(f)\|_2.$$

For $\delta > 0$ define $UP_{\mu}(\mathcal{P}, F, \delta, \sigma_i)$ to be the set of all unital positive maps $L^{\infty}(X, \mu) \to \mathbb{C}^{m_i}$ which, to within δ , are approximately multiplicative and *F*-equivariant and approximately pull the uniform probability measure on $\{1, \ldots, m_i\}$ back to μ .

Proposition

$$h_{\Sigma,\mu}(\mathcal{P}) = \sup_{\varepsilon>0} \inf_{F} \inf_{\delta>0} \limsup_{i\to\infty} \frac{1}{m_i} \log N_{\varepsilon}(\mathsf{UP}_{\mu}(\mathcal{P}, F, \delta, \sigma_i))$$

where $N_{\varepsilon}(\cdot)$ denotes the maximal cardinality of an ε -separated set.

Linear reformulation

The previous proposition can furthermore be used as a definition of $h_{\Sigma,\mu}(\mathcal{P})$ when \mathcal{P} is any finite subset of $L^{\infty}(X,\mu)$. One can also more generally define $h_{\Sigma,\mu}(S)$ for any bounded sequence S in $L^{\infty}(X,\mu)$. We then have the following.

Theorem (K.-Li)

 $h_{\Sigma,\mu}(S)$ has a common value over all dynamically generating bounded sequences S in $L^{\infty}(X,\mu)$.

Definition

The measure entropy $h_{\Sigma,\mu}(X,G)$ of the action $G \curvearrowright X$ is defined as the common value in the above theorem.

Linear reformulation

The topological entropy $h_{\Sigma}(X, G)$ of an action of G on a compact metrizable space X can be defined similarly. It measures the exponential growth of the number of approximately equivariant maps $\{1, \ldots, m_i\} \to X$ that can be distinguished up to some error.

Theorem (variational principle)

Let $G \curvearrowright X$ be an action on a compact metrizable space. Then

$$h_{\Sigma}(X,G) = \sup_{\mu} h_{\Sigma,\mu}(X,G)$$

where μ ranges over all invariant Borel probability measures on X.

The sofic topological and measure entropies coincide with their classical counterparts when G is amenable, and so this extends the classical variational principle.

A generator-free definition of sofic entropy

We seek a general generator-free definition of sofic entropy in the spirit of what Sinai furnished for single transformations in response to Kolmogorov's generator-based definition.

Basic idea

Measure the exponential growth of the number of sofic models as before but for **each** partition at some **fixed observational scale**, and then take a supremum of these growth rates as the scale becomes finer and finer.

The observational scale is determined by a second partition, and so the parameters in the definition now include two partitions playing different roles.

A generator-free definition of sofic entropy

Define $\text{Hom}_{\mu}(\mathcal{P}, F, \delta, \sigma_i)$ to be the set of all homomorphisms from the algebra generated by \mathcal{P} to the algebra of subsets of $\{1, \ldots, m_i\}$ which, to within δ ,

- are approximately *F*-equivariant, and
- approximately pull back the uniform probability measure on $\{1, \ldots, m_i\}$ to μ .

For a partition $\Omega \leq \mathcal{P}$, write $|\text{Hom}_{\mu}(\mathcal{P}, F, \delta, \sigma_i)|_{\Omega}$ for the cardinality of the set of restrictions of elements of $\text{Hom}_{\mu}(\mathcal{P}, F, \delta, \sigma_i)$ to Ω .

Definition

$$h_{\Sigma,\mu}(X,G) = \sup_{\Omega} \inf_{\mathcal{P} \geq \Omega} \inf_{F,\delta} \limsup_{i \to \infty} \frac{1}{m_i} \log |\operatorname{Hom}_{\mu}(\mathcal{P},F,\delta,\sigma_i)|_{\Omega}$$

(日) (同) (三) (三) (三) (○) (○)

A generator-free definition of sofic entropy

We then have the following Kolmogorov-Sinai-type theorem, which enables us to compute the entropy as we have defined it.

Theorem

In the definition of $h_{\Sigma,\mu}(X, G)$, one can equivalently restrict the partitions \mathcal{P} and \mathcal{Q} to range within a given generating σ -algebra. In particular, if there is a finite generating partition then \mathcal{P} and \mathcal{Q} need not range over any partitions except this one.

The above theorem permits us to show that our definition is equivalent to Bowen's in the presence of a generating partition.

Bernoulli actions

For a probability space (Y, ν) write $H(\nu)$ for the supremum of $H_{\nu}(\Omega)$ over all finite partitions Ω of Y.

Theorem

Let (Y, ν) be a probability space and let $G \curvearrowright (Y^G, \nu^G)$ be the associated Bernoulli action. Then

$$h_{\Sigma,\nu^G}(Y^G,G)=H(\nu).$$

Proof

Let Ω be a finite partition consisting of cylinder sets over *e*. The collection of such partitions is generating for the action. The entropy with respect to Ω is easily seen to be bounded above by $H_{\mu}(\Omega)$, so that $h_{\Sigma,\nu^{G}}(Y^{G},G) \leq H(\nu)$.

For the reverse inequality it suffices to show, by the monotonicity properties of entropy, that

$$\inf_{F,\delta} \limsup_{i\to\infty} \frac{1}{m_i} \log |\operatorname{Hom}_{\mu}(\Omega, F, \delta, \sigma_i)|_{\Omega} \geq H_{\mu}(\Omega).$$

To do this, we enumerate the elements of \mathcal{P} as A_1, \ldots, A_n and think of homomorphisms from the algebra generated by \mathcal{Q} to the algebra of subsets of $\{1, \ldots, m_i\}$ as elements of $\{1, \ldots, n\}^{m_i}$, which we regard as a probability space under the measure ν^{m_i} .

The inequality then ensues by combining two observations:

- Using Chebyshev's inequality, one shows that a random element of {1,..., n}^{m_i} with high probability gives a homomorphism in Hom_μ(Ω, F, δ, σ_i) for prescribed F and δ.
- 2. The law of large numbers yields

$$\lim_{m_i\to\infty}\mathbf{P}\Big(\Big|-\frac{1}{m_i}\log\nu^{m_i}(\gamma)-H(\nu)\Big|>\delta\Big)=0,$$

so that for large m_i there is an $L \subseteq \{1, \ldots, n\}^{m_i}$ for which $\nu^{m_i}(L) > 1 - \delta$ and

$$u^{m_i}(\{\gamma\}) \leq e^{-m_i(H(\nu)-\delta)}$$

(日) (同) (三) (三) (三) (○) (○)

for all $\gamma \in L$.

Bernoulli actions

Theorem

Bernoulli actions of countable sofic groups have **completely positive entropy**, which means that every nontrivial factor has strictly positive entropy with respect to every sofic approximation sequence.

Bowen's *f*-invariant

Let $F_r \curvearrowright (X, \mu)$ be a measure-preserving action of a free group on r generators s_1, \ldots, s_r . Write B_n for the set of words in s_1, \ldots, s_r of length at most n. For a finite partition \mathcal{P} of X set

$$F(\mathcal{P}) = (1 - 2r)H(\mathcal{P}) + \sum_{i=1}^{r} H(\mathcal{P} \lor s_i^{-1}\mathcal{P}),$$
$$f(\mathcal{P}) = \inf_{n \in \mathbb{N}} F\left(\bigvee_{s \in B_n} s^{-1}\mathcal{P}\right)$$

This last quantity is the same for all generating partitions \mathcal{P} , and in the case that there exists a generating partition we define the *f*-invariant of the action to be this common value.

Bowen showed that the *f*-invariant coincides with a version of sofic entropy which is locally computed by **averaging over all sofic approximations** on a finite set instead of using a given sofic approximation.

Corollary

Every nontrivial factor of a Bernoulli action of F_r possessing a finite generating partition has strictly positive f-invariant.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <