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History of AW ∗-algebras

I Kaplansky defined AW ∗-algebras in an attempt to give an
abstract algebraic characterization of von Neumann algebras
(W ∗-algebras) in his paper published in the Annals of
Mathematics in 1951. Hence comes the name AW ∗-algebras
(i.e., Abstract W ∗-algebras).

I In 1951, Dixmier found that there are commutative
AW ∗-algebras which are not von Neumann algebras.

I Since then, more attention has been paid to monotone
complete C ∗-algebras which are more maneuverable than
AW ∗-algebras.

I The question “Are all AW ∗-algebras monotone complete?”
arouse.
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Definitions

I A C ∗-algebra A is monotone complete if and only if every
norm-bounded monotone increasing net in Asa has a least
upper bound in Asa.

I A C ∗-algebra A is an AW ∗-algebra if and only if every
maximal abelian C ∗-subalgebra (MASA) is monotone
complete.
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Remark

Remark: It is straightforward to see that every monotone complete
C ∗-algebra A is an AW ∗-algebra. The following argument is due
to J. D. Maitland Wright. Let C be a MASA of A and {xα} a
norm-bounded monotone increasing net in Csa. Then {xα} has a
least upper bound x in Asa. To show that x is actually in Csa, let u
be any unitary in C. Then u∗xu ≥ u∗xαu = u∗uxα = xα, ∀α. Thus
u∗xu ≥ x . Similarly, by replacing u by u∗, we have that uxu∗ ≥ x ,
and so x ≥ u∗xu. Hence u∗xu = x , so that xu = ux . Since u is
any unitary in C, x commutes any element of C. By maximality of
C, x ∈ C.
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Conjecture and Idea of Proof

I Theorem (Conjecture)

All AW ∗-algebras are monotone complete.

I Idea of Proof: Translate Pedersen’s theorem on von Neumann
algebras into AW ∗-algebras by completely positive
idempotents.

I Theorem (Pedersen 1972)

If every MASA of a concrete C ∗-algebra A is weakly closed, then
A is weakly closed.
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Proof

I Proof (with One Gap!): Let A be an AW ∗-algebra
nondegenerate on a Hilbert space H (hence A contains the
identity operator 1H on H), and let φ be a minimal
completely positive idempotent on B(H) that fixes each
element of A. Then the image Imφ is an injective envelope of
A, and hence it is denoted by I (A). Define

S := {x ∈ B(H)sa : φ(x) ∈ A, φ(x2) = φ(x)2}.

Clearly S is a norm-closed subset of B(H)sa containing Asa,
and φ(S) = Asa.
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Proof

I Claim 1: If {xk}nk=1 ⊂ S , then φ(x1 · · · xn) = φ(x1) · · ·φ(xn).

I ∵ By Choi’s multiplicative domain theorem for a 2-positive
mapping φ,

{a ∈ B(H)sa : φ(a2) = φ(a)2}
={a ∈ B(H)sa : φ(ba) = φ(b)φ(a),∀b ∈ B(H)}.

Since φ(x2
n ) = φ(xn)2, applying this theorem with

b = x1 · · · xn−1 and a = xn yields that
φ(x1 · · · xn) = φ(x1 · · · xn−1)φ(xn). Now the assertion follows
by mathematical induction.
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Proof

I Claim 2: S is a real vector space.

I ∵ Let x , y ∈ S and t ∈ R, then
φ(tx + y) = tφ(x) + φ(y) ∈ A. That
φ((tx + y)2) = φ(tx + y)2 follows from Claim 1.

I Define V := S + iS , then φ(V ) = A.

I Claim 3: If z ∈ V , then z∗z ∈ S .

I ∵ Express z as z = x + iy , where x , y ∈ S . Then by Claim 1,
φ(z∗z) = φ((x + iy)∗(x + iy)) =
(φ(x) + iφ(y))∗(φ(x) + iφ(y)) ∈ A and φ((z∗z)2) =
φ(((x + iy)∗(x + iy))2) = φ((x + iy)∗(x + iy))2 = φ(z∗z)2,
and hence z∗z ∈ S .
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Proof

I Claim 4: If x , y ∈ S , then yx ∈ V .

I ∵ This follows from the polarization identity
yx = 1

4

∑3
k=0 ik(x + iky)∗(x + iky) and Claim 3.

I Therefore, V is a C ∗-algebra, and by Claim 1 φ is a
∗-epimorphism from V onto A.
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Proof

I Claim 5: If {xα} is a norm-bounded monotone increasing net
of pairwise commuting elements from S strongly converging
to x ∈ B(H), then x ∈ S .

I ∵ {φ(xα)} is pairwise commuting since {xα} is so and φ is
multiplicative. Let C be a MASA containing {φ(xα)}. Since
A is an AW ∗-algebra, {φ(xα)} has a least upper bound y in
Csa. On the other hand, x is clearly the least upper bound of
{xα} in B(H)sa, and hence φ(x) is an upper bound of
{φ(xα)} in I (A)sa. Assume that φ(x) = y . (This is the gap!)
Then φ(x) = y ∈ A.

Masayoshi KanedaNazarbayev UniversityAstana, Republic of KazakhstanAre all AW∗-algebras monotone complete?



Outline
History of AW∗-algebras

Definitions
Conjecture and Idea of Proof

Proof
Corollaries

Open Questions Which May Fill the Gap

Proof

I Claim 5: If {xα} is a norm-bounded monotone increasing net
of pairwise commuting elements from S strongly converging
to x ∈ B(H), then x ∈ S .

I ∵ {φ(xα)} is pairwise commuting since {xα} is so and φ is
multiplicative. Let C be a MASA containing {φ(xα)}. Since
A is an AW ∗-algebra, {φ(xα)} has a least upper bound y in
Csa. On the other hand, x is clearly the least upper bound of
{xα} in B(H)sa, and hence φ(x) is an upper bound of
{φ(xα)} in I (A)sa. Assume that φ(x) = y . (This is the gap!)
Then φ(x) = y ∈ A.

Masayoshi KanedaNazarbayev UniversityAstana, Republic of KazakhstanAre all AW∗-algebras monotone complete?



Outline
History of AW∗-algebras

Definitions
Conjecture and Idea of Proof

Proof
Corollaries

Open Questions Which May Fill the Gap

Proof

To see that φ(x2) = φ(x)2, first note that {x2
α} ⊂ S by Claim 3,

and that {x2
α} is pairwise commuting and monotone increasing (for

xα ≤ xβ implies that x2
α ≤ x2

β since {xα} is pairwise commuting)

and strongly converging to x2. Thus as in the former part of the
proof of the present claim, φ(x2) is the least upper bound of
{φ(x2

α)}(= {φ(xα)2}) in Csa, and φ(x) commutes with each φ(xα)
by Claim 1 and the fact that x clearly commutes with each xα.
Thus φ(xα) ≤ φ(x) implies that φ(xα)2 ≤ φ(x)2 and hence
φ(x2) ≤ φ(x)2. Together with the Kadison-Schwarz Inequality for
2-positive mapping φ(x)2 ≤ φ(x2), we have that φ(x2) = φ(x)2.
Therefore x ∈ S , and Claim 5 has been shown.
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Proof

I So far we have observed that V is a C ∗-algebra and
φ(V ) = A.

I Lemma (Kadison 1956)

A concrete C ∗-algebra A on a Hilbert space H is a von Neumann
algebra if and only if (Asa)m = Asa, where (Asa)m denotes the set
of elements in B(H) which can be obtained as strong limits of
monotone increasing nets from Asa.

I By Claim 5 together with Kadison’s lemma, every MASA of V
is weakly closed.

I By Pedersen’s theorem, V is weakly closed, i.e., V is a von
Neumann algebra.
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Proof

I Thus, A is the image of a von Neumann algebra V by the
∗-epimorphism φ which is also an idempotent.

I Now it is clear that A is monotone complete. Indeed, if {xα}
is a norm-bounded monotone increasing net in Asa, then by
Vigier’s theorem it strongly converges to some x ∈ V . Then
φ(x) ∈ Asa serves as the least upper bound of {xα} in Asa.
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Corollaries

I Corollary (Conjecture)
For a C ∗-algebra A, the following are equivalent:

i) A is an AW ∗-algebra;
ii) A is a monotone complete C∗-algebra;
iii) A is a quotient of a von Neumann algebra. More specifically,
A is faithfully represented on a Hilbert space as the image of a
von Neumann algebra by a unital completely positive
idempotent φ.

Moreover, such a φ is necessarily a ∗-epimorphism.

I Corollary (Conjecture)

Every AW ∗-algebra is the norm closure of the linear span of its
projections.
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Open Questions Which May Fill the Gap

I Question 1: Suppose that 1H ∈ A ⊂ B ⊂ B(H) be a
sequence of C ∗-subalgebras with φ : B → A a ∗-epimorphism
such that φ2 = φ and A an AW ∗-algebra nondegenerate on
H. For each norm-bounded monotone increasing pairwise
commuting net {xα} with strong limit x ∈ B(H), does φ
extend to a 2-positive mapping from span(B ∪ {x}) onto A?

I The affirmative answer to this question would be sufficient to
conclude that “All AW ∗-algebras are monotone complete”.
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extend to a 2-positive mapping from span(B ∪ {x}) onto A?

I The affirmative answer to this question would be sufficient to
conclude that “All AW ∗-algebras are monotone complete”.
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I Question 2: Suppose that 1H ∈ A ⊂ B ⊂ B(H) be a
sequence of C ∗-subalgebras with φ : B → A a ∗-epimorphism
such that φ2 = φ and A monotone complete and
nondegenerate on H. For a given norm-bounded monotone
increasing net {xα} with strong limit x ∈ B(H), let
φ̃ : span(B ∪ {x})→ span(A∪ {z}) be a linear extension of φ
such that φ̃(x) = z , where z is the strong limit of {φ(xα)} in
B(H). Is φ̃ 2-positive?

I The affirmative answer to this question would be sufficient to
conclude that “Every monotone complete C ∗-algebra is a
quotient of a von Neumann algebra”.
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φ̃ : span(B ∪ {x})→ span(A∪ {z}) be a linear extension of φ
such that φ̃(x) = z , where z is the strong limit of {φ(xα)} in
B(H). Is φ̃ 2-positive?

I The affirmative answer to this question would be sufficient to
conclude that “Every monotone complete C ∗-algebra is a
quotient of a von Neumann algebra”.
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