Report

On the operator $u + \lambda v$ and C^* -subalgebras of the universal irrational rotation algebra

Reported by:	Chunlan Jiang
Joint with:	Junsheng Fang and Feng Xu
Major:	Mathematics
	Operator theory and operator algebras

Department of Mathmatics

Hebei Normal University

(1) Spectrum and Brown spectrum of $u + \lambda v$

Chunlan Jiang, Joint with: Junsheng Fang and Feng Xu On the operator $u + \lambda v$ and C*-subalgebras of the universal irra

2 GENERALIZED UNIVERSAL IRRATIONAL ROTATION \mathcal{C}^* -ALGEBRAS

Chunlan Jiang, Joint with: Junsheng Fang and Feng Xu On the operator $u + \lambda v$ and C*-subalgebras of the universal irra

Let θ be an irrational number and let u and v be two unitary operators such that

$$vu = e^{2\pi i\theta}uv.$$
 (*)

Consider the collection of all irreducible pairs of unitary operators (u_{α}, v_{α}) satisfying (*) and form the operators

$$ilde{u} = \sum \oplus u_lpha, \quad ext{and} \quad ilde{v} = \sum \oplus v_lpha.$$

Let $\mathcal{A}_{\theta} = C^*(\tilde{u}, \tilde{v})$. Then \mathcal{A}_{θ} is called the universal irrational rotational algebra. If $\mathcal{A} = C^*(u, v)$ is any other C^* -algebra satisfying (*), then there is an isomorphism of \mathcal{A}_{θ} onto \mathcal{A} which carries \tilde{u} to u and \tilde{v} to v.

In mathematical physics, the almost mathieu operator arises in the study of the quantum Hall effect. It is given by

 $(H_{\lambda,\theta,\beta}u)(n) = u(n+1) + u(n-1) + 2\lambda\cos(2\pi(n\theta+\beta))u(n)$

acting as a self-adjoint operator on the Hilbert space $l^2(\mathbb{Z})$. Here $\theta, \beta, \lambda \in \mathbb{R}$ are parameters.

Almost mathieu operator was firstly introduced by R.Peierls [Pei]. In pure mathematics, its importance come from the fact of being one of the best-understood examples of an ergodic Schrödinger operator. For example, three problems (now all solved) of Barry Simon's fifteen problems [Ba-SI] about Schrödinger operators" for the twenty-first century "featured the almost Mathieu operator. The fourth problem in [Kac-Sim] (known as the "Ten martini problem" after Kac and Simon) conjectures that the spectrum of the almost Mathieu operator is a cantor set for all $\lambda \neq 0$ and irrational number θ .

Recall that \mathcal{A}_{θ} can be represented on $I^2(\mathbb{Z})$, by mapping u into the bilateral shift (taking ϕ into $(\phi(n-1))_{n\in\mathbb{Z}}$), and then v into the operation of multiplication by $e^{2\pi i n \theta}$ (taking ϕ into $e^{2\pi i n \theta}(\phi(n))_{n\in\mathbb{Z}}$), and then the polynomial $(u + \lambda e^{2\pi i \beta}v) + (u + \lambda e^{2\pi i \beta}v)^*$ is mapped into the bounded self-adjoint operator $H_{\lambda,\theta,\beta}$. Since \mathcal{A}_{θ} is simple (where θ is irrational), the spectrum of $H_{\lambda,\theta,\beta}$ is the same as the spectrum of the element :

$$(u + \lambda e^{2\pi i\beta}v) + (u + \lambda e^{2\pi i\beta}v)^*.$$

Thus, the conjecture of Kac and Simon can be reduced to the following:

Conjecture

If
$$a = u + \lambda e^{2\pi i \beta} v + u^* + \overline{\lambda} e^{-2\pi i \beta} v^*$$
, then $\sigma(a) =$ Cantor set,

where $\lambda \neq 0$, $vu = e^{2\pi i\theta} uv$, θ -irrational number.

Recently, Avila and Jitomirskaya affirmatively answered this conjecture (2009).

QUESTION

A natural question: What is the spectrum of $u + \lambda e^{2\pi i\beta} v$?

If θ is an irrational number, then by the uniqueness of \mathcal{A}_{θ} the spectrum of $u + \lambda e^{2\pi i\beta} v$ is the same as $u + |\lambda| v$.

So from now on, we always assume that $\lambda > 0$ and $\beta = 0$.

It is well known that there is a unique trace τ on \mathcal{A}_{θ} . By the GNS-construction, we obtain a faithful representation π of \mathcal{A}_{θ} on $L^{2}(\mathcal{A}_{\theta}, \tau)$. The weak operator closure of $\pi(\mathcal{A}_{\theta})$ is the hyperfinite II₁ factor R. Note that the spectrum of $u + \lambda v$ is same as the spectrum of $\pi(u + \lambda v)$ in R.

Theorem 1

The spectrum of $u + \lambda v$ is given by: (1) $\sigma(u + v) = \overline{B(0, 1)}$; (2) $\sigma(u + \lambda v) = S^1, \lambda \in (0, 1)$; (3) $\sigma(u + \lambda v) = \lambda S^1, \lambda > 1$.

Chunlan Jiang, Joint with: Junsheng Fang and Feng Xu On the operator $u + \lambda v$ and C*-subalgebras of the universal irra

1

STRONGLY IRREDUCIBLE OPERATOR

An operator T in $\mathscr{L}(\mathscr{H})$ is said to be strongly irreducible if there exists no non-trivial idempotent in $\{T\}'$.

Strongly irreducible operators are generalization of Jordan blocks in matrix algebras.

STRONGLY IRREDUCIBLE OPERATOR

An operator T in $\mathscr{L}(\mathscr{H})$ is said to be strongly irreducible if there exists no non-trivial idempotent in $\{T\}'$.

Strongly irreducible operators are generalization of Jordan blocks in matrix algebras.

Relative strongly irreducible operator

Let M be a type II₁ factor, an operator $T \in M$ is said to be a strongly irreducible operator relative to M, if there exists no non-trivial idempotent in $\{T\}' \cap M$.

LEMMA

For every irrational number $\theta \in (0,1)$, there exists no nontrivial idempotents in $\{u + v\}' \cap R$, i.e. u + v is relative strongly irreducible in R.

1

LEMMA

For every irrational number $\theta \in (0, 1)$, there exists no nontrivial idempotents in $\{u + v\}' \cap R$, i.e. u + v is relative strongly irreducible in R.

COROLLARY

 $\sigma(u+v)$ is connected.

Chunlan Jiang, Joint with: Junsheng Fang and Feng Xu On the operator $u + \lambda v$ and C*-subalgebras of the universal irra

Theorem 2

For θ in a second category subset of [0, 1], we have $u + v^k$ is strongly irreducible relative to R for all k = 1, 2, ...

Recall that operator T in a type II₁ factor M is called irreducible if $\{T, T^*\}' \cap M = \mathbb{C}I$. i.e., the von-Neumann subalgebra generated by T is an irreducible subfactor of M.

By a result of Popa. S. [Pop], every separable type II₁ factor contains an irreducible operator. By definitions, if T is strongly irreducible relative to M, then T is irreducible relative to M.

An operator T is strongly irreducible relative to a type II₁ factor if and only if XTX^{-1} is an irreducible operator relative to M for every bounded invertible operator $X \in M$. However, if T is irreducible relative to M, this is not true in general. The following result shows that an irreducible operator relative to M can be similar to a unitary operator.

SPECTRUM

Theorem 3

Let θ be an irrational number in [0,1] and let *n* be any positive integer. Then in the hyperfinite type II₁ factor *R* there exists a bounded invertible operator *x* such that

$$W^*(xux^{-1}) = W^*(u + v^n) = W^*(u, v^n)$$

where $uv = e^{2\pi i\theta}vu$.

Let *n* be a positive integer, we may show $N = W^*(u + v^n) = W^*(u, v^n)$ is an irreducible subfactor of $W^*(u + v) = R$, with Jones index: [R : N] = n. To see this, we notice that

$$R = N \oplus Nv \oplus Nv^2 \oplus \ldots \oplus Nv^{n-1}$$

By Pimsner and S. Popa 's result [Pim-Pop], we have [R : N] = n. On the other hand, by Theorem 3, for θ in a second category subset of [0, 1], $u + v^n$ is strongly irreducible relative to R. So for every bounded invertible operator $x \in R$, $x(u + v^n)x^{-1}$ generates an irreducible subfactor $W^*(x(u + v^n)x^{-1}$ of R. What is $[R : W^*(x(u + v^n)x^{-1}]?$ Let $r(u + \lambda v)$ be the spectral radius of $u + \lambda v$. Then

$$r(u+\lambda v) = \lim_{n\to+\infty} ||(u+\lambda v)^n||^{\frac{1}{n}}$$

$$= \lim_{n \to +\infty} ||u^n (1 + \lambda \omega) (1 + \alpha \lambda \omega) \cdots (1 + \alpha^{(n-1)} \lambda \omega)||^{\frac{1}{n}}$$

where $\omega = u^* v$ is a Haar unitary operator and $\alpha = e^{2\pi i \theta}$. Hence,

$$\begin{aligned} ||(u+\lambda v)^{n}||^{\frac{1}{n}} &= ||(1+\lambda \omega)(1+\alpha\lambda\omega)\cdots(1+\alpha^{(n-1)}\lambda\omega)||^{\frac{1}{n}} \\ &= ||(1+\lambda M_{z})(1+\alpha\lambda M_{z})\cdots(1+\alpha^{(n-1)}\lambda M_{z})||^{\frac{1}{n}} \\ &= \left(\max_{z\in S^{1}}|(1+\lambda z)(1+\alpha\lambda z)\cdots(1+\alpha^{(n-1)}\lambda z)|\right)^{\frac{1}{n}} \end{aligned}$$

LEMMA

Suppose $0 < \lambda \leq 1$. For any $\varepsilon > 0$, there exists $x \in [0, 1]$ and $N \in \mathbb{N}$ such that for all $n \geq N$,

1

$$\left(\prod_{k=0}^{n-1}(1+\lambda^2+2\lambda\cos(2\pi(x+k heta)))
ight)^{rac{1}{2n}}\geqslant 1-arepsilon.$$

Lemma

Suppose $0 < \lambda \leq 1$. For any $\varepsilon > 0$, there exists $x \in [0, 1]$ and $N \in \mathbb{N}$ such that for all $n \geq N$,

$$\left(\prod_{k=0}^{n-1}(1+\lambda^2+2\lambda\cos(2\pi(x+k heta)))
ight)^{rac{1}{2n}}\geqslant 1-arepsilon.$$

Proof

Chunlan Jiang,

Key point: Let $T : x \to x + \theta \pmod{1}$. Then T is a measure preserving ergodic transformation of [0, 1]. By Birkhoff's Ergodic theorem, for almost all $x \in [0, 1]$, we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \ln(1 + \lambda^2 + 2\lambda \cos(2\pi(x + k\theta))) = \int_0^1 \ln(1 + \lambda^2 + 2\lambda \cos 2\pi x) dx = 0.$$

Joint with: Junsheng Fang and Feng Xu On the operator $u + \lambda v$ and C^{*}-subalgebras of the universal irra

COROLLARY

$$r(u + \lambda v) \ge 1, \forall 0 < \lambda \le 1.$$

Chunlan Jiang, Joint with: Junsheng Fang and Feng Xu On the operator $u + \lambda v$ and C*-subalgebras of the universal irra

COROLLARY

$$r(u + \lambda v) \ge 1, \forall 0 < \lambda \le 1.$$

LEMMA

Suppose $0 < \lambda \le 1$. For any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$ and $x \in [0, 1]$

1

$$\left(\prod_{k=0}^{n-1}(1+\lambda^2+2\lambda\cos(2\pi(x+k heta)))
ight)^{rac{1}{2n}}\leq e^{2arepsilon},orall n\geq N.$$

Chunlan Jiang, Joint with: Junsheng Fang and Feng Xu On the operator $u + \lambda v$ and C^* -subalgebras of the universal irra

COROLLARY

$$r(u + \lambda v) \ge 1, \forall 0 < \lambda \le 1.$$

LEMMA

Suppose $0 < \lambda \le 1$. For any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$ and $x \in [0, 1]$

$$\left(\prod_{k=0}^{n-1}(1+\lambda^2+2\lambda\cos(2\pi(x+k heta)))
ight)^{rac{1}{2n}}\leq e^{2arepsilon},orall n\geq N.$$

COROLLARY

$$r(u + \lambda v) = 1, \forall 0 < \lambda \leq 1.$$

Notice that, $u + v = u(1 + u^*v)$. Since u^*v is a Haar unitary operator, $-1 \in \sigma(u^*v)$. This implies that u + v is not invertible and therefore $0 \in \sigma(u + v)$. Observe that $\sigma(u + v)$ is rotation symmetric. Since $\sigma(u + v)$ is connected and r(u + v) = 1, $\sigma(u + v) = \overline{B(0, 1)}$.

For $0 < \lambda < 1$, it is obvious that $0 \notin \sigma(u + \lambda v)$. We can also show that $r((u + \lambda v)^{-1}) = 1$. Then

$$\sigma(u+\lambda v)=S^1.$$

For $\lambda > 1$, consider $\lambda(\frac{1}{\lambda}u + v)$, we have $\sigma(u + \lambda v) = \lambda S^1$.

Let *M* be a finite von-Neumann algebra with a faithful normal tracial state τ . The Fuglede-Kadison determinant [Fu-Ka] $\triangle : M \rightarrow [0, \infty]$ is given by $\triangle(T) = \exp\{\tau(\ln |T|)\}, T \in M$, with $\exp\{-\infty\} := 0$.

For an arbitrary element T in M, the function $\lambda \to \ln(\triangle(T - \lambda I))$ is subharmonic on \mathbb{C} , and its Laplacian:

$$d\mu_T(\lambda) = rac{1}{2\pi}
abla^2 \ln riangle (T-\lambda I)$$

In the distribution sense, defines a probability measure μ_T on \mathbb{C} , called the Brown's spectral distribution or Brown's measure of T.

From the definition, Brown measure μ_T only depends on the joint distribution of T and T^* .

If T is normal, then μ_T is the trace τ composed with the spectral projection of T. If $M = M_n(\mathbb{C})$, then μ_T is the normalization counting measure $\frac{1}{n}(\delta_{\lambda_1} + \delta_{\lambda_2} + \ldots + \delta_{\lambda_n})$, where $\{\lambda_1, \ldots, \lambda_n\}$ are the eigenvalues of T repeated according to root multiplicity.

HAAGERUP-SCHULTZ THEOREM

Let $T \in M$. If the support set of Brown's measure of T contains more than one point, then T has a nontrivial invariant subspace relative to M.

By this theorem, we can see that it is important to calculate the Brown spectrum of operators.

BROWN'S SPECTRUM DISTRIBUTION

Theorem 4

If $0 < \lambda \leq 1$, then the Brown measure of $u + \lambda v$ is the Haar measure on the unit circle S^1 . If $\lambda > 1$, then the Brown measure of $u + \lambda v$ is the Haar measure on λS^1 .

BROWN'S SPECTRUM DISTRIBUTION

Theorem 4

If $0 < \lambda \leq 1$, then the Brown measure of $u + \lambda v$ is the Haar measure on the unit circle S^1 . If $\lambda > 1$, then the Brown measure of $u + \lambda v$ is the Haar measure on λS^1 .

Sketch proof 1

We need the following lemma first, **Lemma** (Haagerup-Schultz) Let $T \in M$ and for any $n \in \mathbb{N}$, let $\mu_n \in Prob([0,\infty])$ denote the distribution of $(T^n)^*T^n$ w.r.t τ , and let ν_n denote the push forward measure of μ_n under the map $t \to t^{\frac{1}{n}}$. Moreover, let ν denote the push forward measure of μ_T under the map $z \to |z|^2$, i.e., ν is determined by $\nu([0, t^2]) = \mu_T(\overline{B(0, t)}), t > 0$. Then $\nu_n \to v$ weakly in $Prob([0, \infty))$.

Chunlan Jiang, Joint with: Junsheng Fang and Feng Xu On the operator $u + \lambda v$ and C^* -subalgebras of the universal irra

Sketch proof 2

Let $T = u + \lambda v$, and let ν and ν_n be the measures defined as in Lemma of Haagerup-Schultz. Note that $((T^n)^*T^n)^{\frac{1}{n}} = |(1 + \omega) \dots (1 + \alpha^{n-1}\omega)|^{\frac{2}{n}}$, where $\omega = u^*v$ is a Haar unitary operator. So we can view $((T^n)^*T^n)^{\frac{1}{n}}$ as the multiplication operator on $L^2[0, 1]$ corresponding to the function

$$|\prod_{k=0}^{n-1} (2+2\cos(2\pi(x+k\theta)))|^{\frac{1}{n}}$$

Let *m* be the Lebesgue measure on [0,1]. For 0 < b < 1, since [0, *b*) is an open set relative to $[0,\infty)$ and $\nu_n \rightarrow \nu$ weakly in $Prob([0,\infty))$,

BROWN'S SPECTRUM DISTRIBUTION

$$\nu([0,b)) \leq \lim_{n \to \infty} \inf \nu_n([0,b))$$

=
$$\lim_{n \to \infty} \inf m\left(\left\{x : |\prod_{k=0}^{n-1} (2 + 2\cos(2\pi(x+k\theta)))|^{\frac{1}{n}} \in [0,b)\right\}\right).$$

Note that for almost all $x \in [0, 1]$,

$$\lim_{n\to\infty} |\prod_{k=0}^{n-1} (2+2\cos(2\pi(x+k\theta)))|^{\frac{1}{n}} = 1.$$

Chunlan Jiang, Joint with: Junsheng Fang and Feng Xu On the operator $u + \lambda v$ and C*-subalgebras of the universal irra

In particular, $|\prod_{k=0}^{n-1} (2 + 2\cos(2\pi(x + k\theta)))|^{\frac{1}{n}}|$ converges in measure to the constant function 1 on [0, 1]. Since b < 1, $\nu([0, b)) = 0$. Thus ν is the Dirac measure δ_1 and the support of μ_T is contained in S^1 . Since μ_T is rotation invariant, μ_T is the Haar measure on S^1 .

For $\lambda \neq 1$, by Theorem 1, $\sigma(u + \lambda v) = S^1$ if $0 < \lambda < 1$ and $\sigma(u + \lambda v) = \lambda S^1$ if $\lambda > 1$. Since $\mu_{(u+\lambda v)}$ is rotation invariant and the support of $\mu_{(u+\lambda v)}$ is contained in $\sigma(u + \lambda v)$, the Brown measure of $u + \lambda v$ is the Haar measure on the unit circle S^1 if $0 < \lambda < 1$ and the Haar measure on λS^1 if $\lambda > 1$.

GENERALIZED UNIVERSAL IRRATIONAL ROTATION C^* -ALGEBRAS

Ш

To study $C^*(u + \lambda v)$ we introduce the following definition. A generalized universal irrational rotation algebra $\mathcal{A}_{\theta,\gamma} = C^*(x, w)$ is the universal C^* -algebra satisfying the following properties:

$$w^*w = ww^* = 1,$$
 (1)

$$x^*x = \gamma(w), \tag{2}$$

$$xx^* = \gamma(e^{-2\pi i\theta}w), \tag{3}$$

$$xw = e^{-2\pi i\theta}wx, \tag{4}$$

where $\gamma(z) \in C(S^1)$ is a positive function.

TRACIAL LINEAR FUNCTIONALS ON GENERALIZED UNIVERSAL IRRATIONAL ROTATION C^* -ALGEBRAS

Ш

• There is a classical faithful trace τ on a generalized universal irrational algebra $\mathcal{A}_{\theta,\gamma}$

TRACIAL LINEAR FUNCTIONALS ON GENERALIZED UNIVERSAL IRRATIONAL ROTATION C^* -ALGEBRAS

- There is a classical faithful trace τ on a generalized universal irrational algebra $\mathcal{A}_{\theta,\gamma}$
- Applying the GNS-construction to τ , $\mathcal{A}_{\theta,\gamma} = C^*(x, w)$ is isomorphic to $C^*(u\gamma(v)^{1/2}, v)$ and the isomorphism takes x to $u\gamma(v)^{1/2}$ and w to v.

TRACIAL LINEAR FUNCTIONALS ON GENERALIZED UNIVERSAL IRRATIONAL ROTATION C^* -ALGEBRAS

- There is a classical faithful trace τ on a generalized universal irrational algebra $\mathcal{A}_{\theta,\gamma}$
- Applying the GNS-construction to τ , $\mathcal{A}_{\theta,\gamma} = C^*(x, w)$ is isomorphic to $C^*(u\gamma(v)^{1/2}, v)$ and the isomorphism takes x to $u\gamma(v)^{1/2}$ and w to v.
- Suppose γ(z) has finite zero points which can be divided into nonempty disjoint classes A₁, ···, A_r in the following sense: z₁ and z₂ in A_j if and only if z₂ = e^{2πikθ}z₁ for some k ∈ Z. Then the dimension of the space of tracial linear functionals on A_{θ,γ} = C^{*}(x, w) is 1 + ∑_{j=1}^r(|A_j| 1), where |A_j| is the number of elements in A_j.

SIMPLE GENERALIZED UNIVERSAL IRRATIONAL ROTATION C^* -ALGEBRAS

Ш

 Let Λ₁ be the set of zero points of functions γ(e^{2πinθ}z) for n ≥ 0, and let Λ₂ be the set of zero points of functions γ(e^{-2πinθ}z) for n ≥ 1. Then A_{θ,γ} is a simple algebra if and only if Λ₁ ∩ Λ₂ = Ø.

SIMPLE GENERALIZED UNIVERSAL IRRATIONAL ROTATION C^* -ALGEBRAS

- Let Λ₁ be the set of zero points of functions γ(e^{2πinθ}z) for n ≥ 0, and let Λ₂ be the set of zero points of functions γ(e^{-2πinθ}z) for n ≥ 1. Then A_{θ,γ} is a simple algebra if and only if Λ₁ ∩ Λ₂ = Ø.
- If a generalized universal C^* -algebra $\mathcal{A}_{\theta,\gamma}$ is simple, then for every α in $(\mathbb{Z} + \mathbb{Z}\theta) \cap [0, 1]$, there is a projection p in $\mathcal{A}_{\theta,\gamma}$ such that $\tau(p) = \alpha$.

SIMPLE GENERALIZED UNIVERSAL IRRATIONAL ROTATION C^* -ALGEBRAS

- Let Λ₁ be the set of zero points of functions γ(e^{2πinθ}z) for n ≥ 0, and let Λ₂ be the set of zero points of functions γ(e^{-2πinθ}z) for n ≥ 1. Then A_{θ,γ} is a simple algebra if and only if Λ₁ ∩ Λ₂ = Ø.
- If a generalized universal C^* -algebra $\mathcal{A}_{\theta,\gamma}$ is simple, then for every α in $(\mathbb{Z} + \mathbb{Z}\theta) \cap [0, 1]$, there is a projection p in $\mathcal{A}_{\theta,\gamma}$ such that $\tau(p) = \alpha$.
- Suppose θ and η are two irrational numbers and γ ∈ C(S¹) is a positive function with finite zero points. Then A_{θ,γ} ≅ A_{η,γ} if and only if θ ≡ ±η mod Z.

K-groups of generalized universal irrational rotation C^* -algebras

Ш

Theorem 5

Suppose $\gamma(z)$ has *n* zero points, $n \ge 1$. Then

$${\it K}_0({\cal A}_{ heta,\gamma})\cong {\mathbb Z}^{n+1}, \quad {\it K}_1({\cal A}_{ heta,\gamma})\cong {\mathbb Z}.$$

Sketch of proof

K-GROUPS OF GENERALIZED UNIVERSAL IRRATIONAL ROTATION C^* -ALGEBRAS

Theorem 5

Suppose $\gamma(z)$ has *n* zero points, $n \ge 1$. Then

$${\it K}_0({\cal A}_{ heta,\gamma})\cong \mathbb{Z}^{n+1}, \quad {\it K}_1({\cal A}_{ heta,\gamma})\cong \mathbb{Z}.$$

Sketch of proof

Suppose Λ is the set of zero points of γ(z). Let A be the C*-subalgebra generated by w, let

$$J_1 = \{f(w) : f(\lambda) = 0 \text{ for } \lambda \in \Lambda\},\$$

and let $J_2 = uJ_1u^*$. Then $\mathcal{A}_{\theta,\gamma}$ is *-isomorphic to the covariance algebra $C^*(\mathcal{A}, \Theta)$ for the partial automorphism $\Theta = (\operatorname{Ad} u, J_1, uJ_1u^*)$ of $C^*(w)$ in the sense of Ruy Exel [9].

K-groups of generalized universal irrational rotation C^* -algebras

Ш

For a covariance algebra C*(A, Θ) for the partial automorphism
 Θ = (θ, J, θ(J)) of A, Ruy Exel [9] proved the following generalized
 Pimsner-Voiculescu exact sequnece

Chunlan Jiang, Joint with: Junsheng Fang and Feng Xu On the operator $u + \lambda v$ and C*-subalgebras of the universal irra

K-groups of generalized universal irrational rotation C^* -algebras

For a covariance algebra C*(A, Θ) for the partial automorphism
 Θ = (θ, J, θ(J)) of A, Ruy Exel [9] proved the following generalized
 Pimsner-Voiculescu exact sequnece

COROLLARY

Suppose $\gamma_1(z)$ and $\gamma_2(z)$ have finite zero points. Then $\mathcal{A}_{\theta,\gamma_1} \cong \mathcal{A}_{\theta,\gamma_1}$ implies that $\gamma_1(z)$ and $\gamma_2(z)$ have same number of zero points

Chunlan Jiang, Joint with: Junsheng Fang and Feng Xu On the operator $u + \lambda v$ and C*-subalgebras of the universal irra

Ш

It is well known that the universal irrational C^* -algebra \mathcal{A}_{θ} has the following properties (Rieffel [1981], Pimsner-Voiculescu [1980], Elliott-Evans [1993])

(a) \mathcal{A}_{θ} is simple.

(b) There is a unique trace on \mathcal{A}_{θ} .

(c) For every α in $(\mathbb{Z} + \mathbb{Z}\theta) \cap [0, 1]$, there exists projection p in $C^*(u, v)$ such that $\tau(p) = \alpha$.

(d)
$$K_0(\mathcal{A}_{ heta})\cong\mathbb{Z}+\mathbb{Z} heta$$
 and $K_1(\mathcal{A}_{ heta})\cong\mathbb{Z}^2$

(f) $\mathcal{A}_{\theta} \cong \mathcal{A}_{\eta} \Leftrightarrow \theta = \pm \eta \pmod{\mathbb{Z}}$.

(g) \mathcal{A}_{θ} is a limit circle algebra and hence with stable rank 1 and real rank 0.

GENERALIZED UNIVERSAL IRRATIONAL ROTATION C^* -ALGEBRAS

Now, we consider C*-algebra $C^*(u + \lambda v)$ generated by $u + \lambda v$. We have the following:

(a) For $\lambda \neq 1$, $0 < \lambda < +\infty$, we have $C^*(u + \lambda v) = C^*(u, v)$. However, $C^*(u + v)$ is a proper subalgebra of $\mathcal{A}_{\theta} = C^*(u, v)$. Indeed, $\inf\{||u - x|| : x \in C^*(u + v)\} = 1.$ (b) $C^*(u+v) \cong \mathcal{A}_{\theta \gamma}$ for $\gamma(z) = |1+z|^2$. (c) $C^*(u+v)$ is simple. (d) For every $\alpha \in (\mathbb{Z} + \mathbb{Z}\theta) \cap [0, 1]$, there exists projection p in $C^*(u+v)$ such that $\tau(p) = \alpha$. (e) $K_0(C^*(u_{\theta} + v_{\theta})) \cong \mathbb{Z} + \mathbb{Z}\theta$ and $K_1(C^*(u + v)) \cong \mathbb{Z}$. In particular, $C^*(u+v)$ is not *-isomorphic to $C^*(u, v)$. (f) $C^*(u_{\theta} + v_{\theta}) \cong C^*(u_n + v_n) \Leftrightarrow \theta = \pm \eta (\text{mod}\mathbb{Z}).$

Question 1: Is $C^*(u + v)$ a limit circle C^* -algebra? **Question 2:** Classify generalized universal irrational rotation algebras $\mathcal{A}_{\theta,\gamma}$, presumably in terms of zero points of $\gamma(z)$.

Ш

[2] Avila, A; Krikrian, R., Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. 164 (2006), 911-940.

- [2] Avila, A; Krikrian, R., Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. 164 (2006), 911-940.
- [3] Brown, L.G., Lidskii's theorem in the type II case, *Geometric methods in operator algebras*, H.Araki and E.Effros (Eds) Pitman Res. Notes Math. Ser 123 (1986), 1-35.

- [2] Avila, A; Krikrian, R., Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. 164 (2006), 911-940.
- [3] Brown, L.G., Lidskii's theorem in the type II case, *Geometric methods in operator algebras*, H.Araki and E.Effros (Eds) Pitman Res. Notes Math. Ser 123 (1986), 1-35.
- [4] Biane, P; Lehner, F., *Computation of some examples of Brown's spectral measure in free probality,* Colloq. Math., 90(2001), 181-211.

- [2] Avila, A; Krikrian, R., Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. 164 (2006), 911-940.
- [3] Brown, L.G., Lidskii's theorem in the type II case, *Geometric methods in operator algebras*, H.Araki and E.Effros (Eds) Pitman Res. Notes Math. Ser 123 (1986), 1-35.
- [4] Biane, P; Lehner, F., *Computation of some examples of Brown's spectral measure in free probality*, Colloq. Math., 90(2001), 181-211.
- [5] Béllissard, J.; Simon, B., Cantor spectrum for the almost Mathieu equation, J. Funct. Anal, 48 (1982), no. 3, 408-419.

Ш

[7] Davidson, K. R.; Fields Institute Monographs, 6. American Mathematical Society, Providence. RI, 1996.

- [7] Davidson, K. R.; Fields Institute Monographs, 6. American Mathematical Society, Providence. RI, 1996.
- [8] Elliott, G. A.; Evans, D.E., The structure of the irrational rotation-algebra. Ann. of Math. (2) 138 (1993), no. 3, 477C501.

- [7] Davidson, K. R.; Fields Institute Monographs, 6. American Mathematical Society, Providence. RI, 1996.
- [8] Elliott, G. A.; Evans, D.E., The structure of the irrational rotation-algebra. Ann. of Math. (2) 138 (1993), no. 3, 477C501.
 - [9] Exel, R.; Circle actions on -algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence J.Funct Anal. 122 (1994), no. 2, 361401.

- [7] Davidson, K. R.; Fields Institute Monographs, 6. American Mathematical Society, Providence. RI, 1996.
- [8] Elliott, G. A.; Evans, D.E., The structure of the irrational rotation-algebra. Ann. of Math. (2) 138 (1993), no. 3, 477C501.
- [9] Exel, R.; Circle actions on -algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence J.Funct Anal. 122 (1994), no. 2, 361401.
- [10] Fuglede, B,; Kadison, R., Determinant theory in finite factors, Ann. of Math., 55(3) 1952, 520-530.

Ш

[12] Helffer, B.; Sjöstrand., Semiclassicial analysis for Harper's equation. III. Cantor structure of the spectrum. Mem. Soc .Math. France (N.S), No. 39 (1989),1-124.

- [12] Helffer, B.; Sjöstrand., Semiclassicial analysis for Harper's equation. III. Cantor structure of the spectrum. Mem. Soc .Math. France (N.S), No. 39 (1989),1-124.
- [13] Haagerup, U.; Schultz, H.; Invariant subspaces for operators on Hilbert space. Publ. Math. Inst. Hautes Études Sci. No. 109 (2009), 19-111.

- [12] Helffer, B.; Sjöstrand., Semiclassicial analysis for Harper's equation. III. Cantor structure of the spectrum. Mem. Soc .Math. France (N.S), No. 39 (1989),1-124.
- [13] Haagerup, U.; Schultz, H.; Invariant subspaces for operators on Hilbert space. Publ. Math. Inst. Hautes Études Sci. No. 109 (2009), 19-111.
- [14] Jones, V. F. R., Index for subfactors, Invent. Math., 72:1-25, 1983.

[15] Jiang, C-L, Wang, Z-Y., Strongly irreducible operators on Hilbert space. Pitman Research Notes in Mathematics Series, 389. Longman, Harlow, 1998. x+243 pp.

[15] Jiang, C-L, Wang, Z-Y., Strongly irreducible operators on Hilbert space. Pitman Research Notes in Mathematics Series, 389. Longman, Harlow, 1998. x+243 pp.

Ш

 [16] Jiang, C-L, Wang, Z-Y., Structure of Hilbert space operators. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. x+248 pp.

[15] Jiang, C-L, Wang, Z-Y., Strongly irreducible operators on Hilbert space. Pitman Research Notes in Mathematics Series, 389. Longman, Harlow, 1998. x+243 pp.

- [16] Jiang, C-L, Wang, Z-Y., Structure of Hilbert space operators. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. x+248 pp.
- [17] Last, Y., Spectral theory of Sturm-Liouville operators on infinite intervals: a review of recent developments. Sturn-Liouville theory, 99-120, Birkhäuser, Basel, 2005.

- [15] Jiang, C-L, Wang, Z-Y., Strongly irreducible operators on Hilbert space. Pitman Research Notes in Mathematics Series, 389. Longman, Harlow, 1998. x+243 pp.
- [16] Jiang, C-L, Wang, Z-Y., Structure of Hilbert space operators. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. x+248 pp.
- [17] Last, Y., Spectral theory of Sturm-Liouville operators on infinite intervals: a review of recent developments. Sturn-Liouville theory, 99-120, Birkhäuser, Basel, 2005.
- [18] Peierls, R., Zur Theorie Des Diamagnetismus von Leitungselektronen Z.Phys. 80, 763-791. (1933).

- [15] Jiang, C-L, Wang, Z-Y., Strongly irreducible operators on Hilbert space. Pitman Research Notes in Mathematics Series, 389. Longman, Harlow, 1998. x+243 pp.
- [16] Jiang, C-L, Wang, Z-Y., Structure of Hilbert space operators. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. x+248 pp.
- [17] Last, Y., Spectral theory of Sturm-Liouville operators on infinite intervals: a review of recent developments. Sturn-Liouville theory, 99-120, Birkhäuser, Basel, 2005.
- [18] Peierls, R., Zur Theorie Des Diamagnetismus von Leitungselektronen Z.Phys. 80, 763-791. (1933).
- [19] Popa, S., On a problem of R.V. Kadison on maximal abelian
 *-subalgebras in factors, Invent. Math. 65 (1981) 269-281.

 [20] Pimsner, M.; Popa. S.; Entropy and index for subfactors. Ann. Sci. École Norm. Sup (4)19(1986), no. 1, 57C106.

 [20] Pimsner, M.; Popa. S.; Entropy and index for subfactors. Ann. Sci. École Norm. Sup (4)19(1986), no. 1, 57C106.

Ш

[21] Puig, J., Cantor spectrum for the almost Mathieu operator. Comm. Math, Phys. 244 (2004), no. 2, 297-309. [20] Pimsner, M.; Popa. S.; Entropy and index for subfactors. Ann. Sci. École Norm. Sup (4)19(1986), no. 1, 57C106.

- [21] Puig, J., Cantor spectrum for the almost Mathieu operator. Comm. Math, Phys. 244 (2004), no. 2, 297-309.
- [22] Pimsner, M.; Voiculescu, D., Imbedding the irrational rotation C*-algebra into an AF-algebra. J. Operator Theory 4(1980), no. 2, 201-210.

 [20] Pimsner, M.; Popa. S.; Entropy and index for subfactors. Ann. Sci. École Norm. Sup (4)19(1986), no. 1, 57C106.

- [21] Puig, J., Cantor spectrum for the almost Mathieu operator. Comm. Math, Phys. 244 (2004), no. 2, 297-309.
- [22] Pimsner, M.; Voiculescu, D., Imbedding the irrational rotation C*-algebra into an AF-algebra. J. Operator Theory 4(1980), no. 2, 201-210.
- [23] Rieffel. M. A., C*-algebras associated with irrational rotations. Pacific J. Math. 93 (1981), no.2, 415-429.

- [20] Pimsner, M.; Popa. S.; Entropy and index for subfactors. Ann. Sci. École Norm. Sup (4)19(1986), no. 1, 57C106.
- [21] Puig, J., Cantor spectrum for the almost Mathieu operator. Comm. Math, Phys. 244 (2004), no. 2, 297-309.
- [22] Pimsner, M.; Voiculescu, D., Imbedding the irrational rotation C*-algebra into an AF-algebra. J. Operator Theory 4(1980), no. 2, 201-210.
- [23] Rieffel. M. A., C*-algebras associated with irrational rotations. Pacific J. Math. 93 (1981), no.2, 415-429.
- [24] Simon, B., Schrödinger operators in the twenty-first century, Mathematical physicis, 2000, 283-288. Imp. Coll. Press, London, 2000.