Calderón-Zygmund operators associated to matrix-valued kernels

Guixiang HONG: Université de Franche-Comté

Joint work with L.D. López-Sánchez, J.M. Martell and J. Parcet

Wuhan June, 2012

Outline :

- Motivation
- 2 Main results
- Open problems

• A semicommutative CZO has the formal expression

$$Tf(x) \sim \int_{\mathbb{R}^n} k(x,y)(f(y)) \, dy,$$

where the kernel acts linearly on the matrix-valued function $f = (f_{ij})$ and satisfies standard size/smoothness Calderón-Zygmund type conditions.

- This is the operator model for quite a number of problems which have attracted some attention in recent years, including matrix-valued paraproducts, operator-valued Calderón-Zygmund theory or Fourier multipliers on group von Neumann algebras.
- To be more precise, we consider noncommutative L_p spaces on the von Neumann algebra A formed by essentially bounded functions f : ℝⁿ → B(ℓ₂). Let us highlight a few significant examples :

• Scalar kernels. $k(x, y) \in \mathbb{C}$ and

$$k(x,y)(f(y)) = (k(x,y)f_{ij}(y)).$$

• Schur product actions. $k(x,y) \in \mathcal{B}(\ell_2)$ and

$$k(x,y)(f(y)) = \Big(k_{ij}(x,y)f_{ij}(y)\Big).$$

- Fully noncommutative model. $k(x, y) \in \mathcal{B}(\ell_2) \bar{\otimes} \mathcal{B}(\ell_2)$ and $k(x, y)(f(y)) = \left(\sum_m \operatorname{tr} \left(k''_m(y) f(y) \right) k'_m(x)_{ij} \right).$
- Partial traces, noncommuting kernels. $k(x,y) \in \mathcal{B}(\ell_2)$ and

$$k(x,y)(f(y)) = \begin{cases} \left(\sum_{s} k_{is}(x,y)f_{sj}(y)\right), \\ \left(\sum_{s} f_{is}(y)k_{sj}(x,y)\right). \end{cases}$$

- Scalar kernels required in Parcet-2009 a matrix-valued Calderón-Zygmund decomposition in terms of noncommutative martingales and a pseudo-localization principle to control the tails of *Tf* in the *L*₂-metric. Hilbert space valued kernels were later considered in Mei-Parcet-2009, see also Pisier-Xu-1997, Mei-2007, Radrianantoanina-2002,2005,2007 for previous related results.
- The second case refers to the Schur matrix product k(x, y) f(y), considered for the first time in Junge-Mei-Parcet-arxiv to analyze cross product extensions of classical CZO's. It is instrumental for Hörmander-Mihlin type theorems on Fourier multipliers associated to discrete groups and for Schur multipliers with a Calderón-Zygmund behavior, see also Junge-Mei-Parcet-preprint1, preprint2.

• In the fully noncommutative model, we approximate k(x, y) by a sum of elementary tensors $\sum_m k'_m(x) \otimes k''_m(y)$ and the action is given by

$$Tf(x) \sim \int_{\mathbb{R}^n} (id \otimes \operatorname{tr}) \left[k(x,y) (\mathbf{1} \otimes f(y)) \right] dy.$$

In this case, the noncommutative nature of $L_p(\mathcal{A})$ predominates and the presence of a Euclidean subspace is ignored. That is what happens for purely noncommutative CZO's in Junge-Mei-Parcet-preprint2.

The last case refers to matrix-valued kernels acting on f by left/right multiplication, k(x, y)f(y) and f(y)k(x, y).
 Matrix-valued paraproducts are prominent examples. This is the only case in which the kernel does not commute with f.

- Our main goal is to obtain endpoint estimates for CZO's with noncommuting kernels, motivated by a recent estimate from Junge-Mei-Parcet-arxiv for semicommutative CZO's. If k(x, y) acts linearly on B(l₂) and satisfies the Hörmander smoothness condition in the norm of bounded linear maps on B(l₂), Lemma 1.3 in that paper can be summarized as follows
 - If T is $L_{\infty}(L_{2}^{r}(\mathbb{R}^{n})$ -bounded, then $T: L_{\infty}(\mathcal{A}) \to \operatorname{BMO}_{r}(\mathcal{A})$,
 - If T is $L_{\infty}(L_{2}^{c}(\mathbb{R}^{n})$ -bounded, then $T: L_{\infty}(\mathcal{A}) \to BMO_{c}(\mathcal{A})$.

• Here, the $L_{\infty}(L_2^c)$ -boundedness assumption refers to

$$\left\|\left(\int_{\mathbb{R}^n} Tf(x)^* Tf(x) \, dx\right)^{\frac{1}{2}}\right\|_{\mathcal{B}(\ell_2)} \lesssim \left\|\left(\int_{\mathbb{R}^n} f(x)^* f(x) \, dx\right)^{\frac{1}{2}}\right\|_{\mathcal{B}(\ell_2)},$$

while the column-BMO norm of a matrix-valued function g is given by

$$\sup_{Q \text{ cube}} \left\| \left(\int_{Q} \left(g(x) - g_{Q} \right)^{*} \left(g(x) - g_{Q} \right) dx \right)^{\frac{1}{2}} \right\|_{\mathcal{B}(\ell_{2})}.$$

• Taking adjoints —so that the * switches everywhere from left to right— we find $L_{\infty}(L_2^r)$ -boundedness and the row-BMO norm. The noncommutative BMO space $BMO(\mathcal{A}) = BMO_r(\mathcal{A}) \cap BMO_r(\mathcal{A})$ was introduced in Pisier-Xu-1997. According to Musat-2003 it has the expected interpolation behavior in the L_p scale. Thus, standard interpolation and duality arguments show that $T: L_p(\mathcal{A}) \to L_p(\mathcal{A})$ for 1 provided the kernel issmooth enough in both variables and T is a normal self-adjoint map satisfying the $L_{\infty}(L_2^r)$ and $L_{\infty}(L_2^c)$ boundedness assumptions. In other words, the row/column boundedness conditions essentially play the role of the L₂-boundedness assumption in classical Calderón-Zygmund theory.

- Although this certainly works for non-scalar kernels, e.g. Schur product actions were used in Theorem B of Junge-Mei-Parcet-arxiv, the boundedness assumptions impose nearly commuting conditions on the kernel which are too strong for CZO's associated to noncommuting kernels.
- Namely, given $k : \mathbb{R}^{2n} \setminus \Delta \to \mathcal{B}(\ell_2)$ smooth and given $x \notin \operatorname{supp}_{\mathbb{R}^n} f$, let us set formally the row/column CZO's

$$T_c f(x) = \int_{\mathbb{R}^n} k(x,y) f(y) \, dy$$
 and $T_r f(x) = \int_{\mathbb{R}^n} f(y) k(x,y) \, dy.$

It is not difficult to construct noncommuting kernels with

i)
$$T_r$$
 and T_c are $L_2(\mathcal{A})$ -bounded,
ii) T_r and T_c are not $L_p(\mathcal{A})$ -bounded for $1 ,
see e.g. Section 6.1 of Parcet-2009 for specific examples.$

- Assume for what follows that T_r and T_c are $L_2(\mathcal{A})$ -bounded. We are interested in weakened forms of L_p boundedness and endpoint estimates for these CZO's. A *dyadic noncommuting* CZO will be a $L_2(\mathcal{A})$ -bounded pair (T_r, T_c) associated to a noncommuting kernel satisfying one of the following conditions :
 - a) Perfect dyadic kernels

$$\|k(x,y) - k(z,y)\|_{\mathcal{B}(\ell_2)} + \|k(y,x) - k(y,z)\|_{\mathcal{B}(\ell_2)} = 0$$

whenever $x, z \in Q$ and $y \in R$ for some disjoint dyadic cubes Q, R.

b) Cancellative Haar shift operators

$$k(x,y) = \sum_{\substack{Q \text{ dyadic} \\ \ell(R) = 2^{-r}\ell(Q) \\ \ell(S) = 2^{-s}\ell(S)}} \sum_{\substack{Q \text{ dyadic} \subset Q \\ \ell(R) = 2^{-r}\ell(Q) \\ \ell(S) = 2^{-s}\ell(S)}} \alpha_{RS}^Q h_R(x) h_S(y),$$
where the $\alpha_{RS}^Q \in \mathcal{B}(\ell_2)$ with $\|\alpha_{RS}^Q\|_{\mathcal{B}(\ell_2)} \leq \frac{\sqrt{|R||S|}}{|Q|}$. Here h_Q refers to any of the $2^n - 1$ Haar functions related to Q .

- Motivation Main results Open problems
- Perfect dyadic kernels were introduced in Auscher-Hoffman-Muscalu-Tao-Thiele-2002 and include Haar multipliers, as well as paraproducts and their adjoints. If J_ and J₊ denote the left/right halves of a dyadic interval in ℝ, the standard model for Haar shifts is the dyadic Hilbert transform with kernel ∑_J(h_J(y) - h_{J+}(y))h_J(x). It appeared after Petermichl's crucial result in 2000, showing the classical Hilbert transform as a certain average of dyadic Hilbert transforms. Hytönen's representation theorem to appear in Ann.Math extends this result to arbitrary CZO's.
- We will write generic noncommuting CZO for $L_2(\mathcal{A})$ -bounded pairs (T_r, T_c) with a noncommuting kernel satisfying the standard smoothness. Our first significant result is the following.

Theorem A

The following inequalities hold:

i) Dyadic noncommuting CZO's. Given $f \in L_1(\mathcal{A})$

$$\inf_{f=f_r+f_c} \left\| T_r f_r \right\|_{1,\infty} + \left\| T_c f_c \right\|_{1,\infty} \lesssim \|f\|_1.$$

ii) Generic noncommuting CZO's. Given $f \in H_1(\mathcal{A})$

$$\inf_{f=f_r+f_c} \left\| T_r f_r \right\|_1 + \left\| T_c f_c \right\|_1 \lesssim \|f\|_{\mathrm{H}_1(\mathcal{A})}.$$

• Our main result is the inequality given in Theorem A i) and their noncommutative generalizations in Theorem C below. The left/right modular nature of T_r/T_c is essential for the weak type (1, 1) estimates. The following result easily follows from Theorem A by interpolation/duality. Nevertheless, it is worth mentioning the L_p inequalities that we find.

Theorem B

The following inequalities hold for generic noncommuting CZO's: i) If $1 and <math>f \in L_p(A)$

$$\inf_{f=f_r+f_c}\left\|T_rf_r\right\|_p+\left\|T_cf_c\right\|_p\lesssim \|f\|_p.$$

ii) If $2 and <math>f \in L_p(\mathcal{A})$

$$\left\| T_r f \right\|_{\mathrm{H}^r_p(\mathcal{A})} + \left\| T_c f \right\|_{\mathrm{H}^c_p(\mathcal{A})} \lesssim \| f \|_p.$$

iii) Given $f \in L_{\infty}(\mathcal{A})$, we also have $\|T_r f\|_{BMO_r(\mathcal{A})} + \|T_c f\|_{BMO_c(\mathcal{A})} \lesssim \|f\|_{\infty}$.

• Theorems A and B also hold for other operator-valued functions, replacing $\mathcal{B}(\ell_2)$ by any semifinite von Neumann algebra \mathcal{M} .

- Let us now consider a weak-* dense filtration Σ_A = (A_n)_{n≥1} of von Neumann subalgebras of an arbitrary semifinite von Neumann algebra A. In the following result, we will consider two kind of operators in L_p(A) :
 - a) Noncommuting martingale transforms

$$M^r_\xi f = \sum_{k\geq 1} \Delta_k(f) \xi_{k-1}$$
 and $M^c_\xi f = \sum_{k\geq 1} \xi_{k-1} \Delta_k(f).$

b) Paraproducts with noncommuting symbol

$$\Pi_{\rho}^{r}(f) = \sum_{k\geq 1} \mathsf{E}_{k-1}(f) \Delta_{k}(\rho) \quad \text{and} \quad \Pi_{\rho}^{\mathsf{c}}(f) = \sum_{k\geq 1} \Delta_{k}(\rho) \mathsf{E}_{k-1}(f).$$

- Here Δ_k denotes the martingale difference operator
 E_k − E_{k−1} and ξ_k ∈ A_k is an adapted sequence. Of course, the symbols ξ and ρ do not necessarily commute with the function. Randrianantoanina considered noncommutative martingale transforms with commuting coefficients in 2002.
- As for paraproducts with noncommuting symbols, Mei studied the L_p -boundedness for p > 2 and regular filtrations in 2006 and also analyzed in 2010 the case p < 2 in the dyadic matrix-valued case under a strong BMO condition of the symbol. Our theorem below goes beyond these results, see also Mei-Parcet-2009 for related results.

Theorem C

Consider the pairs:

i) Martingale transforms $(M_{\xi}^{r}, M_{\xi}^{c})$, with $\sup_{k} \|\xi_{k}\|_{\mathcal{M}} < \infty$.

ii) Martingale paraproducts $(\Pi_{\rho}^{r}, \Pi_{\rho}^{c})$, with $\Pi_{\rho}^{r/c} L_{2}(\mathcal{A})$ -bounded. If $\Sigma_{\mathcal{A}}$ is regular, we obtain weak type (1, 1) inequalities like in Theorem Ai) for martingale transforms and paraproducts. The estimates in Theorems Aii) and B also hold for both families and for arbitrary filtrations $\Sigma_{\mathcal{A}}$. Moreover, the martingale paraproducts Π_{ρ}^{r} and Π_{ρ}^{c} are L_{p} -bounded for $2 and <math>L_{\infty} \rightarrow BMO$.

• Our results recover those in Randrianantoanina-2002 and provide appropriate substitutes for noncommuting coefficients. Our result for paraproducts goes beyond Mei-2006's in two aspects. First, our estimates for p > 2 hold for arbitrary martingales, not just for regular ones. Second, we give a partial answer to Mei's question for the case $1 \le p \le 2.2$

• The idea for the proof of Theorem Ai) is to first decompose f as $f = f_c + f_r$ by triangular truncation, then to write each part f_i as the sum of g_d^i , g_{off}^i , b_d^i , b_{off}^i using the noncommutative Calderón-Zygmund decomposition. Finally, the localization property of perfect dyadic map or Haar shift enable us to deal with the terms g_{off}^i , b_d^i , b_{off}^i , which is not the case for general map.

Problem 1. Extend Theorem Ai) to arbitrary CZO's with noncommuting kernels.

• As explained in Parcet-2007, a key ingredient for a successful application of the noncommutative CZ decomposition is to use it on \mathcal{M} -bimodular maps. In this paper, our decomposition $f = f_r + f_c$ has allowed us to make it work for either left or right \mathcal{M} -modular maps. There are however many other semicommutative CZO's, some of which were mentioned in the Motivation. We know from Junge-Mei-Parcet-arxiv that a semicommutative CZO satisfying $L_{\infty}(L_2^r)$ and $L_{\infty}(L_2^c)$ boundedness also satisfies $T : L_{\infty}(\mathcal{A}) \to BMO(\mathcal{A})$.

Problem 2. Do we have $T : L_1(\mathcal{A}) \to L_{1,\infty}(\mathcal{A})$ under the same assumptions ?

- It is a little bit unsatisfactory to require regular filtrations to provide weak type inequalities for martingales transforms/paraproducts with noncommuting coefficients/symbols. It is well-known that these estimates hold in the classical setting for any filtration by means of Gundy's decomposition. The noncommutative extension of Gundy's decomposition was constructed in Parcet-Randrianantoanina-2006.
 - **Problem 3.** Can we eliminate the regularity assumption from Theorem Ci)?

Thank you

▲ロ▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ● 圓 ● のへの