að-invariant Lévy processes on free quantum groups and their Markov semigroups

Uwe Franz (Université de Franche-Comté)

June 4-10, 2012, 武汉大学

joint work with: Anna Kula (Jagiellonian University Kraków) Fabio Cipriani (Politecnico di Milano) að-invariant Lévy processes on free quantum groups and their Markov semigroups

Uwe 宇武 Franz (Université de Franche-Comté)

June 4-10, 2012, 武汉大学

joint work with: Anna Kula (Jagiellonian University Kraków) Fabio Cipriani (Politecnico di Milano)

- Identify nice¹ quantum Markov semigroups (i.e. semigroups of UCP maps) on C*-algebras of compact quantum groups.
- Study their "potential theory", i.e. construct their Dirichlet forms, derivations, Dirac operators, etc., and study their spectral properties.

¹analoges of Browian motion and the heat semigroup + □ > + □ > + □ > + ≥ → + ≥ → ≥ → ⊃ ⊂ Uwe Franz (UFC) α∂-INV. Markov semigroups on O₂⁺ / 2

Outline

- The free orthogonal quantum group
- translation invariant Markov semigroups
- að-invariance
- Example: a Lévy-Khinchine-type formula for \mathfrak{ad} -invariant convolution semigroups on O_n^+

The orthogonal group O_n

Theorem

The C*-algebra $C(O_n)$ of continuous functions on the orthogonal group O_n is the universal commutative C*-algebra generated by

$$x_{jk}$$
 $1 \le j, k \le n$

with the relations

$$x_{jk}^* = x_{jk}$$
$$\sum_{\ell=1}^n x_{j\ell} x_{k\ell} = \delta_{jk} = \sum_{\ell=1}^n x_{\ell j} x_{\ell k}$$

The free orthogonal quantum group O_n^+

Definition (Wang)

The (universal or full) C*-algebra $C_u(O_n^+)$ (also denoted $A_o(I_n)$ or $A_o(n)$) of "continuous functions" on the **free orthogonal quantum group** O_n^+ is defined as the universal C*-algebra generated by

$$x_{jk}$$
 $1 \le j, k \le n$

with the relations

$$x_{jk}^* = x_{jk}$$
$$\sum_{\ell=1}^n x_{j\ell} x_{k\ell} = \delta_{jk} = \sum_{\ell=1}^n x_{\ell j} x_{\ell k}$$

Definition (Woronowicz)

A compact quantum group is a pair $\mathbb{G} = (A, \Delta)$, where A is a unital C^* -algebra, $\Delta : A \to A \otimes A$ is a unital, *-homomorphism which is coassociative (i.e. $(\Delta \otimes id_A) \circ \Delta = (id_A \otimes \Delta) \circ \Delta$) such that the quantum cancellation rules are satisfied

$$\overline{\mathrm{Lin}}((1\otimes \mathsf{A})\Delta(\mathsf{A}))=\overline{\mathrm{Lin}}((\mathsf{A}\otimes 1)\Delta(\mathsf{A}))=\mathsf{A}\otimes\mathsf{A}.$$

A is called the algebra of "continuous functions" on \mathbb{G} and denoted by $C(\mathbb{G})$.

O_n^+ is a compact quantum group

Remark

There exists a unique unital *-algebra homomorphism $\Delta : C_u(O_n^+) \to C_u(O_n^+) \otimes C_u(O_n^+)$ with

$$\Delta(x_{jk}) = \sum_{\ell=1}^n x_{j\ell} \otimes x_{\ell k}.$$

 $O_n^+ = (C_u(O_n^+), \Delta)$ is a compact quantum group.

For $a \in A = C(\mathbb{G})$ and $\xi, \xi' \in A^*$ we can define a **convolution**

$$\begin{array}{rcl} \xi \star \xi'(a) &=& (\xi \otimes \xi') \Delta(a) \\ \xi \star a &=& (\mathrm{id} \otimes \xi) \Delta(a) \\ a \star \xi &=& (\xi \otimes \mathrm{id}) \Delta(a) \end{array}$$

Theorem (Woronowicz)

Let (A, Δ) be a compact quantum group. There exists unique state (called the **Haar state**) *h* on A such that

$$a \star h = h \star a = h(a)I, \quad a \in A.$$

In general, h is not a trace.

Peter-Weyl-Woronowicz theory

• An *n*-dimensional unitary corepresentation of \mathbb{G} is a unitary $U = (u_{jk})_{1 \le j,k \le n} \in M_n(A)$ such that

$$\Delta(u_{jk}) = \sum_{\ell=1}^n u_{j\ell} \otimes u_{\ell k}.$$

Let (U^(s))_{s∈I} be a complete family of mutually inequivalent irreducible unitary correpresentations of G. The algebra of the "polynomials" (or "smooth functions") on G is defined as

$$\operatorname{Pol}(\mathbb{G}) = \operatorname{Lin}\{u_{jk}^{(s)}; s \in \mathcal{I}, 1 \leq j, k \leq n_s\},\$$

where n_s is the dimension of $u^{(s)}$.

Pol(G) is a dense *-subalgebra of C(G), which is a Hopf *-algebra with

$$\varepsilon \left(u_{jk}^{(s)}
ight) = \delta_{jk}$$
 and $S \left(u_{jk}^{(s)}
ight) = \left(u_{kj}^{(s)}
ight)^*$.

The reduced C^{*}-algebra $C_r(O_n^+)$ of "cont. functions" on O_n^+

For $n \ge 3$ the Haar state of O_n^+ is not faithful on $C_u(O_n^+)$. One defines the **reduced C*-algebra** $C_r(O_n^+)$ of "cont. functions" on O_n^+ as the image of the GNS representation of $C_u(O_n^+)$ w.r.t. *h*. \Rightarrow By construction *h* is faithful on $C_r(O_n^+)$.

The *-Hopf algebra $\operatorname{Pol}(O_n^+)$ of "polynomials" on O_n^+

Pol (O_n^+) is the *-subalgebra of $C_u(O_n^+)$ or $C_r(O_n^+)$ generated by x_{jk} , $1 \le j, k \le n$. O_n^+ is of Kac type, i.e. the Haar state *h* is a trace and $S^2 = \mathrm{id}$.

・ロン ・回 と ・ ヨン

From conv. semigroups to transl.inv. Markov semigroups

Theorem

Let $(\varphi_t)_{t\geq 0}$ be a continuous convolution semigroup of states on $Pol(\mathbb{G})$, i.e.

$$\forall s, t \ge 0, \quad \varphi_s \star \varphi_t = \varphi_{s+t}, \\ \forall a \in \operatorname{Pol}(\mathbb{G}), \quad \lim_{t \searrow 0} \varphi_t(a) = \varphi_0(a) = \varepsilon(a).$$

Then the semigroup $(T_t)_{t\geq 0}$,

$$T_t = (\mathrm{id} \otimes \varphi_t) \circ \Delta : \mathrm{Pol}(\mathbb{G}) \to \mathrm{Pol}(\mathbb{G})$$

extends continuously to $C_u(\mathbb{G})$ and $C_r(\mathbb{G})$. The T_t are **translation invariant** in the sense that

$$\Delta \circ T_t = (\mathrm{id} \otimes T_t) \circ \Delta.$$

э

イロト イポト イヨト イヨト

From transl.inv. Markov semigroups conv. semigroups

Theorem

Let $\mathbb{G} = (A, \Delta)$ be a compact quantum group and $(T_t)_{t\geq 0}$ a Markov semigroup on $A = C(\mathbb{G})$. Then $(T_t|_{Pol(\mathbb{G})})_{t\geq 0}$ is of the form

$$T_t|_{\operatorname{Pol}(\mathbb{G})} = (\operatorname{id} \otimes \varphi_t) \circ \Delta$$

if and only if T_t is translation invariant for all $t \ge 0$.

Corollary

One-to-one correspondence between translation invariant Markov semigroups on $C_r(\mathbb{G})$ (or $C_u(\mathbb{G})$) and **Lévy processes** (in the sense of Schürmann) on $Pol(\mathbb{G})$.

イロト イポト イヨト イヨト

\mathfrak{ad} -Invariance

Definition

The adjoint action of a Hopf algebra \mathcal{A} is defined by $\mathrm{ad}: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$,

$$\mathfrak{ad}(a) = a_{(1)}S(a_{(3)}) \otimes a_{(2)}, \quad a \in \mathcal{A}.$$

where $\Delta^{(2)}(a) = a_{(1)} \otimes a_{(2)} \otimes a_{(3)}$ (Sweedler notation).

Definition

A linear map $T \in Lin(\mathcal{A})$ is called \mathfrak{a} -invariant, if

$$(\mathrm{id}\otimes T)\circ\mathfrak{ad}=\mathfrak{ad}\circ T.$$

A linear functional $L \in \mathcal{A}'$ is called \mathfrak{ad} -invariant, if

$$(\mathrm{id}\otimes L)\circ\mathfrak{ad}=L\mathbf{1}_{\mathcal{A}}.$$

э

イロト イヨト イヨト

ad-Invariance

Remarks

- The counit ε and the Haar state h are $\mathfrak{a}\mathfrak{d}$ -invariant.
- For $L \in \mathcal{A}'$, \mathcal{T}_L is ad-invariant if and only if L is ad-invariant.
- If $L, L' \in \mathcal{A}'$ are \mathfrak{ad} -invariant then $L \star L'$ is \mathfrak{ad} -invariant.

Proposition

Let $(\varphi_t)_{t\geq 0}$ be a convolution semigroup of unital functionals on \mathcal{A} . The following are equivalent.

- The operators $T_t = (\mathrm{id} \otimes \varphi_t) \circ \Delta$ are \mathfrak{ad} -invariant;
- The functionals φ_t are \mathfrak{ad} -invariant;
- The functional

$$L = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \varphi_t$$

is $\mathfrak{a}\mathfrak{d}$ -invariant.

\mathfrak{ad} -inv. functionals and the subalg. of central functions

Let $\mathcal{A} = Pol(\mathbb{G})$ now be the *-Hopf algebra of "polynomials" on a compact quantum group.

Proposition

A functional *L* is $\mathfrak{a}\mathfrak{d}$ -invariant if and only if it is of the form $L(u_{jk}^{(s)}) = c_s \delta_{jk}$ with some coefficients $c_s \in \mathbb{C}$.

Denote by

$$\mathcal{A}_0 = \operatorname{Lin}\left\{\chi_s = \sum_{j=1}^{n_s} u_{jj}^{(s)}; s \in \mathcal{I}\right\}$$

the algebra of "central polynomial functions" on $\mathbb{G}.$

Proposition

If $\mathbb G$ is of Kac type, then $\operatorname{ad}_h:\mathcal A\to\mathcal A$ defined by

$$\mathrm{ad}_h(a) = (h \otimes \mathrm{id}) \circ \mathrm{ad}(a) = h\big(a_{(1)}S(a_{(3)})\big)a_{(2)}$$

satisfies

$$\mathrm{ad}_h(a^*a) = (h\otimes\mathrm{id})\Big(\big(\mathrm{ad}(a)\big)^*\mathrm{ad}(a)\Big)$$

for $a \in \mathcal{A}$ and therefore preserves positivity. Furthermore, we have $\operatorname{ad}_h(\mathcal{A}) = \mathcal{A}_0$, $\operatorname{ad}_h \circ \operatorname{ad}_h = \operatorname{ad}_h$, $\operatorname{ad}_h(1) = 1$, $h \circ \operatorname{ad}_h = h$, i.e. ad_h is a conditional expectation onto \mathcal{A}_0 .

Now we know what we have to do!

Corollary

If $\mathbb G$ is of Kac type, then

$$\mathrm{ad}_h^*:\mathcal{A}_0'\ni\phi\mapsto\phi\circ\mathrm{ad}_h\in\mathcal{A}'$$

defines bijections between states on \mathcal{A}_0 and \mathfrak{ad} -invariant states on \mathcal{A} , and between generating functionals on \mathcal{A}_0 and ad-invariant \mathfrak{ad} -invariant generating functionals on \mathcal{A} .

Conclusion

In order to classify translation invariant \mathfrak{a} -invariant generating functionals on a compact quantum group \mathbb{G} of Kac type, it is sufficient to classify the generating functionals on its algebra $\mathcal{A}_0(\mathbb{G})$ of central polynomial functions.

Example: The free orthogonal quantum group O_n^+

For O_n^+ , we have

$$\mathcal{A}_0(O_n^+)\cong \operatorname{Pol}([-n,n]).$$

and $\varepsilon(f) = f(n)$ for $f \in \mathcal{A}_0(\mathcal{O}_n^+) \cong \operatorname{Pol}([-n, n])$. The generating functionals on $\mathcal{A}_0(\mathcal{O}_n^+) \cong \operatorname{Pol}([-n, n])$ are of the form

$$Lf = -af'(n) + \int_{-n}^{n} \frac{f(x) - f(n)}{n - x} d\nu(x)$$

where b > 0 is a real number and ν a finite measure on [-n, n].

Remark

The same method works for all compact quantum groups of Kac type (with commutative fusion rules), e.g., for the free permutation quantum group S_n^+ we have an analogous formula.

谢谢

< ∃⇒

э

Selected references

- F. Cipriani, *Dirichlet Forms on Noncommutative Spaces* in Lecture Notes in Math. 1954, Springer 2008.
- U. Franz, *Levy Processes on Quantum Groups and Dual Groups* in Lecture Notes in Math. 1866, Springer 2006.
- M. Liao, *Lévy Processes in Lie Groups*, Cambridge Tracts in Mathematics 162, Cambridge University Press, 2004.
- M. Schürmann, *White noise on Bialgebras*, Lecture Notes in Math. 1544, Springer 1993.
- S. L. Woronowicz, *Compact Quantum Groups*, Les Houches, Session LXIV, 1995, Quantum Symmetries, Elsevier 1998.