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@ Cuculescu (1971) proved the Doob inequality of weak type
(1,1) for noncommutative martingales.

@ Junge (2002) established the Doob inequality of type (p, p)
for noncommutative martingales.

@ Junge/Xu (2007) proved the maximal ergodic inequalities on
noncommutative L,-spaces.

Our goal is to prove the noncommutative analogue of the Doob
inequality for convex functions of maximal functions.

For this, we establish a Marcinkiewicz type interpolation theorem
for convex functions of maximal functions in the noncommutative
setting.

T.N.Bekjan NC martingale theory



Noncommutative Orlicz spaces
Noncommutative Orlicz spaces

Let V' be a semifinite von Neumann algebra acting on a Hilbert
space H with a normal semifinite faithful trace v. Let Ly(N)
denote the topological *-algebra of measurable operators with
respect to (N, v). The topology of Lo(N) is determined by the
convergence in measure.

For x € Lo(N) we define

Xs(@) = 7(ex (|2])) (s > 0)
and
pe(x) =inf{s > 0: A(x) <t} (¢t > 0),

where e (|z|) = €(s,50) (|]) is the spectral projection of |z
associated with the interval (s,00). The function s +— Ag(x) is
called the distribution function of x and u.(x) is the generalized
singular number of x.
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Noncommutative Orlicz spaces
Noncommutative Orlicz spaces

Let ® be an Orlicz function on [0, 00), i.e., a continuous increasing
and convex function satisfying ®(0) = 0 and lim;_,o, ®(¢) = 0.
Recall that @ is said to satisfy the /As-condition if there is a
constant C such that ®(2t) < C®(¢t) for all t > 0. In this case, we
write ® € As.

Given an Orlicz function @, let

D(ts)
M(t,®) =su , t>0.
(2 =305 (5)
Define
~ im log M (t, @) ~ lim log M (t, @)
pe = o logt @@= t oo logt
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Noncommutative Orlicz spaces
Noncommutative Orlicz spaces

The following characterizations of pg and g hold

t
Py = Sup {p >0: /0 s‘“b(s)% =0t Pd(t)), YVt > 0};

g =inf {g >0 / s_qq)(s)% = O(®(1), vt > 0}.
t

For an Orlicz function ®, the noncommutative Orlicz space Lg(N)
is defined as the space of all measurable operators = with respect

to (NV,v) such that
o(o()) <=
for some ¢ > 0.
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Noncommutative Orlicz spaces
Noncommutative Orlicz spaces

The space Lo (N), equipped with the norm
lz||le = inf {c >0: 1/(<I>(|x]/c)) < 1},

is a Banach space. If ®(t) =t with 1 < p < oo then
Lo(N) = L,(N). Note that if @ € Ay, then for x € Ly(N),
v(®(z)) < oo if and only if z € Lg(N).
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The space Ly (M;

L,(M; () spaces

Given 1 < p < o0, recall that L, (M;£°) is defined as the space of
all sequences (zy,)n>1 in L,(M) for which there exist

a,b € Lyp(M) and a bounded sequence (y)n>1 in M such that
T, = ay,b for all n > 1. For such a sequence, set

1@n)n1ll, (A, = inf {llallzp sup lynlloolbll2p},  (2.1)

where the infimum runs over all possible factorizations of (z,)n>1
as above. This is a norm and L,(M; () is a Banach space.
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The space Ly (M;

L,(M; () spaces

These spaces were first introduced by Pisier (1998) in the case
when M is hyperfinite and by Junge (2002) in the general case. It
is easy to check that

oty ey = i { 5 (lalBy + 112, s e
(2.2)
the infimum taken over the same parameters as above.
We usually write

Jsup*zall, = N@a)uzill e
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The space Ly (M; £°°)

L,(M; () spaces

Definition

Let ® be an Orlicz function. Let (x,) be a sequence in Lg(M).
We define 7[®(sup,, " z,)] by

i 1
T[@(sngmn)} := inf {2<7'[<I>(|a|2)] + 7'[<I>(|b|2)]> Sup Hyn||oo}
(2.3)
where the infimum is taken over all decompositions x,, = ay,b for
a,b € Lo(M) and (yn) C Loo(M) with |a|?, |b]* € Le(M), and
lynlloo < 1 for all n.
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The space Ly, (M; £°°)

L,(M; () spaces

Let ® be an Orlicz function satisfying the /\y-condition.

(1) If x = (z,) is a positive sequence in Ly (M), then
T[Q)(supJ“xn)] ~ inf {T[@(a)] : a € LE(M) such that z, < a,Vn

(2) For any two sequences x = (x,),y = (yn) in Ly(M) one has

T [CI) (S%p+($n 4 yn))} ST [@ (S%p"‘xn)] + 7 [(I) (sgp*’yn)} :
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The space Ly, (M; £°°)

L,(M; () spaces

For a sequences = = (z,,) in Ly (M), set

Jsuntan|, i= it {3 > 0: ro(supr )] <1}

One can check that ||sup,, "z,|/¢ is a norm in x = (x,,). Define

suptx,
n

Lo(M; 1) = {(mn) C Lo(M) : T|:(I)<S1711p+x7n>] < oo JA> 0}

equipped with [|(n)|| Ly (Ae0e) = IIsup, T 2n/|6. Then
La(M; %) is a Banach space. For 1 < p < oo, if ®(¢) = t? then
L (M;0%°) = L,(M; £°).
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interpolation

Definition

Let 1 <py <p1 <oo. Let S = (Sy)n>1 be a sequence of maps
from L} (M) + L (M) — L{ (M).
(1) S is said to be subadditive, if for any n > 1,

Sn(z +y) < Su(x) + Snly), Va,y € Lj (M) + L, (M).

(2) S is said to be of weak type (p,p) (po < p < p1) if there is a
positive constant C' such that for any x € L;f (M) and any
A > 0 there exists a projection e € M such that

P
T(el) < (CH)\pr> and eSp(x)e <\, Vn > 1.
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Noncc
interpolation

(3) S is said to be of type (p,p) (po < p < p1) if there is a
positive constant C such that for any = € L;(M) there exists
a € L} (M) satisfying
lall, < Cllall, and  Si() < a, ¥n > 1.

In other words, S is of type (p,p) if and only if
”S(»T)HLP(M;KOO) < Cllz]|p for all z € L;‘(M).
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interpolation

Theorem (B-Chen-Osekowski)

Let S = (Sn)n>0 be a sequence of maps from

LE(M) + LI (M) — L (M). Let 1 < p < co. Assume that S is
subadditive. If S is simultaneously of weak type (p,p) with
constant C), and of type (00, 00) with constant C, then for an
Orlicz function ® with p < pg < g < 00, there exists a positive
constant C' depending only on (), C, pe and gs, such that

n

T [cp <Sup+5'n(:£)>] < COr[d(2)], (3.1)

for all z € LE(M).
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Doob inequality

Let M be a finite von Neumann algebra with a normalized normal
faithful trace 7. Let (M,,),>0 be an increasing sequence of von
Neumann subalgebras of M such that U,,>oM,, generates M (in
the w*-topology).

(Mp)n>0 is called a filtration of M. The restriction of 7 to M,, is
still denoted by 7. Let &, = £(:|M,,) be the conditional
expectation of M with respect to M,,. Then &, is a norm 1
projection of Lg(M) onto Lgy(My,) and E,(x) > 0 whenever

x > 0.

A noncommutative Lg-martingale with respect to (M,,),>0 is a
sequence x = (xy,)n>0 such that x, € Lg(M,,) and

gn (:L'nJrl) = T

for any n > 0.
Let [|z|le = sup,>¢ ||7n]le. If [|[z[le < oo, then z is said to be a
bounded Lg-martingale.
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Doob inequality

Theorem (B-Chen-Osekowski)

Let M be a finite von Neumann algebra with a normalized normal
faithful trace 7, equipped with a filtration (M,,),,>0 of von
Neumann subalgebras of M. Let ® be an Orlicz function and

x = (x,,) be a noncommutative Lg-martingale with respect to
(Mp). If 1 < pp < g < 00, then

T [@ <8171Lp+xn>} ~ 7[®(|2])]. (4.1)

v
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