Noncommutative integral inequalities for convex functions of maximal functions and applications

Turdebek N. Bekjan Xinjiang University

(joint work with Zeqian Chen and Adam Osekowski)

June 6, 2012, Wuhan

- Cuculescu (1971) proved the Doob inequality of weak type (1,1) for noncommutative martingales.
- Solution Junge (2002) established the Doob inequality of type (p, p) for noncommutative martingales.
- Junge/Xu (2007) proved the maximal ergodic inequalities on noncommutative L_p-spaces.

Aim

Our goal is to prove the noncommutative analogue of the Doob inequality for convex functions of maximal functions.

For this, we establish a Marcinkiewicz type interpolation theorem for convex functions of maximal functions in the noncommutative setting.

Let \mathcal{N} be a semifinite von Neumann algebra acting on a Hilbert space \mathbb{H} with a normal semifinite faithful trace ν . Let $L_0(\mathcal{N})$ denote the topological *-algebra of measurable operators with respect to (\mathcal{N}, ν) . The topology of $L_0(\mathcal{N})$ is determined by the convergence in measure.

For $x \in L_0(\mathcal{N})$ we define

$$\lambda_s(x) = \tau(e_s^{\perp}(|x|)) \ (s > 0)$$

and

$$\mu_t(x) = \inf\{s > 0 : \lambda_s(x) \le t\} \ (t > 0),$$

where $e_s^{\perp}(|x|) = e_{(s,\infty)}(|x|)$ is the spectral projection of |x|associated with the interval (s,∞) . The function $s \mapsto \lambda_s(x)$ is called the *distribution function* of x and $\mu_t(x)$ is the *generalized* singular number of x.

Let Φ be an Orlicz function on $[0, \infty)$, i.e., a continuous increasing and convex function satisfying $\Phi(0) = 0$ and $\lim_{t\to\infty} \Phi(t) = \infty$. Recall that Φ is said to satisfy the Δ_2 -condition if there is a constant C such that $\Phi(2t) \leq C\Phi(t)$ for all t > 0. In this case, we write $\Phi \in \Delta_2$. Given an Orlicz function Φ , let

$$M(t,\Phi) = \sup_{s>0} \frac{\Phi(ts)}{\Phi(s)}, \quad t > 0.$$

Define

$$p_{\Phi} = \lim_{t \searrow 0} \frac{\log M(t, \Phi)}{\log t}, \quad q_{\Phi} = \lim_{t \nearrow \infty} \frac{\log M(t, \Phi)}{\log t}.$$

The following characterizations of p_{Φ} and q_{Φ} hold

$$p_{\Phi} = \sup \left\{ p > 0 : \int_{0}^{t} s^{-p} \Phi(s) \frac{ds}{s} = O(t^{-p} \Phi(t)), \ \forall t > 0 \right\};$$

$$q_{\Phi} = \inf \Big\{ q > 0 : \ \int_{t}^{\infty} s^{-q} \Phi(s) \frac{ds}{s} = O(t^{-q} \Phi(t)), \ \forall t > 0 \Big\}.$$

For an Orlicz function Φ , the noncommutative Orlicz space $L_{\Phi}(\mathcal{N})$ is defined as the space of all measurable operators x with respect to (\mathcal{N}, ν) such that

$$\nu\Big(\Phi\Big(\frac{|x|}{c}\Big)\Big) < \infty$$

for some c > 0.

The space $L_{\Phi}(\mathcal{N})$, equipped with the norm

$$||x||_{\Phi} = \inf \{c > 0 : \nu(\Phi(|x|/c)) < 1\},\$$

is a Banach space. If $\Phi(t) = t^p$ with $1 \le p < \infty$ then $L_{\Phi}(\mathcal{N}) = L_p(\mathcal{N})$. Note that if $\Phi \in \Delta_2$, then for $x \in L_0(\mathcal{N})$, $\nu(\Phi(x)) < \infty$ if and only if $x \in L_{\Phi}(\mathcal{N})$.

Given $1 \leq p < \infty$, recall that $L_p(\mathcal{M}; \ell^{\infty})$ is defined as the space of all sequences $(x_n)_{n\geq 1}$ in $L_p(\mathcal{M})$ for which there exist $a, b \in L_{2p}(\mathcal{M})$ and a bounded sequence $(y_n)_{n\geq 1}$ in \mathcal{M} such that $x_n = ay_n b$ for all $n \geq 1$. For such a sequence, set

$$\|(x_n)_{n\geq 1}\|_{L_p(\mathcal{M},\ell^{\infty})} := \inf \left\{ \|a\|_{2p} \sup_n \|y_n\|_{\infty} \|b\|_{2p} \right\}, \qquad (2.1)$$

where the infimum runs over all possible factorizations of $(x_n)_{n\geq 1}$ as above. This is a norm and $L_p(\mathcal{M}; \ell^{\infty})$ is a Banach space.

These spaces were first introduced by Pisier (1998) in the case when \mathcal{M} is hyperfinite and by Junge (2002) in the general case. It is easy to check that

$$\|(x_n)_{n\geq 1}\|_{L_p(\mathcal{M},\ell^{\infty})} = \inf\left\{\frac{1}{2}\left(\|a\|_{2p}^2 + \|b\|_{2p}^2\right)\sup_n \|y_n\|_{\infty}\right\},$$
(2.2)

the infimum taken over the same parameters as above. We usually write

$$\left\|\sup_{n}^{+} x_{n}\right\|_{p} = \|(x_{n})_{n\geq 1}\|_{L_{p}(\mathcal{M},\ell^{\infty})}.$$

Definition

Let Φ be an Orlicz function. Let (x_n) be a sequence in $L_{\Phi}(\mathcal{M})$. We define $\tau[\Phi(\sup_n + x_n)]$ by

$$\tau \Big[\Phi \big(\sup_{n}^{+} x_{n} \big) \Big] := \inf \left\{ \frac{1}{2} \Big(\tau \big[\Phi \big(|a|^{2} \big) \big] + \tau \big[\Phi \big(|b|^{2} \big) \big] \Big) \sup_{n} \|y_{n}\|_{\infty} \right\}$$
(2.3)
where the infimum is taken over all decompositions $x_{n} = ay_{n}b$ for
 $a, b \in L_{0}(\mathcal{M})$ and $(y_{n}) \subset L_{\infty}(\mathcal{M})$ with $|a|^{2}, |b|^{2} \in L_{\Phi}(\mathcal{M})$, and
 $\|y_{n}\|_{\infty} \leq 1$ for all n .

- **→** → **→**

э

Proposition

Let Φ be an Orlicz function satisfying the \triangle_2 -condition. (1) If $x = (x_n)$ is a positive sequence in $L_{\Phi}(\mathcal{M})$, then

$$\tau\Big[\Phi\big(\sup_{n}^{+}x_{n}\big)\Big]\approx\inf\Big\{\tau\big[\Phi\big(a\big)\big]:\ a\in L_{\Phi}^{+}(\mathcal{M})\ \text{such that}\ x_{n}\leq a,\forall n$$

(2) For any two sequences $x = (x_n), y = (y_n)$ in $L_{\Phi}(\mathcal{M})$ one has

$$\tau \Big[\Phi \big(\sup_{n}^{+} (x_n + y_n) \big) \Big] \lesssim \tau \Big[\Phi \big(\sup_{n}^{+} x_n \big) \Big] + \tau \Big[\Phi \big(\sup_{n}^{+} y_n \big) \Big].$$

Remark

For a sequences $x = (x_n)$ in $L_{\Phi}(\mathcal{M})$, set

$$\left|\sup_{n} x_{n}\right|_{\Phi} := \inf\left\{\lambda > 0: \tau\left[\Phi\left(\sup_{n} \frac{x_{n}}{\lambda}\right)\right] \le 1\right\}$$

One can check that $\|\sup_n x_n\|_{\Phi}$ is a norm in $x = (x_n)$. Define

$$L_{\Phi}(\mathcal{M};\ell^{\infty}) := \left\{ (x_n) \subset L_{\Phi}(\mathcal{M}) : \tau \left[\Phi\left(\sup_n^{+} \frac{x_n}{\lambda} \right) \right] < \infty \; \exists \lambda > 0 \right\}$$

equipped with $||(x_n)||_{L_{\Phi}(\mathcal{M};\ell^{\infty})} = ||\sup_n t^* x_n||_{\Phi}$. Then $L_{\Phi}(\mathcal{M};\ell^{\infty})$ is a Banach space. For $1 \leq p < \infty$, if $\Phi(t) = t^p$ then $L_{\Phi}(\mathcal{M};\ell^{\infty}) = L_p(\mathcal{M};\ell^{\infty})$.

interpolation

Definition

Let $1 \leq p_0 < p_1 \leq \infty$. Let $S = (S_n)_{n \geq 1}$ be a sequence of maps from $L_{p_0}^+(\mathcal{M}) + L_{p_1}^+(\mathcal{M}) \mapsto L_0^+(\mathcal{M})$.

(1) S is said to be subadditive, if for any $n \ge 1$,

$$S_n(x+y) \le S_n(x) + S_n(y), \quad \forall x, y \in L_{p_0}^+(\mathcal{M}) + L_{p_1}^+(\mathcal{M}).$$

(2) S is said to be of weak type (p, p) $(p_0 \le p < p_1)$ if there is a positive constant C such that for any $x \in L_p^+(\mathcal{M})$ and any $\lambda > 0$ there exists a projection $e \in \mathcal{M}$ such that

$$\tau(e^{\perp}) \leq \left(\frac{C\|x\|_p}{\lambda}\right)^p \quad \text{and} \quad eS_n(x)e \leq \lambda, \; \forall n \geq 1.$$

interpolation

(3) S is said to be of type (p, p) $(p_0 \le p \le p_1)$ if there is a positive constant C such that for any $x \in L_p^+(\mathcal{M})$ there exists $a \in L_p^+(\mathcal{M})$ satisfying

$$\|a\|_p \le C \|x\|_p \quad \text{and} \quad S_n(x) \le a, \ \forall n \ge 1.$$

In other words, S is of type (p, p) if and only if $||S(x)||_{L_p(\mathcal{M};\ell^{\infty})} \leq C ||x||_p$ for all $x \in L_p^+(\mathcal{M})$.

interpolation

Theorem (B-Chen-Osekowski)

Let $S = (S_n)_{n \geq 0}$ be a sequence of maps from $L_1^+(\mathcal{M}) + L_\infty^+(\mathcal{M}) \mapsto L_0^+(\mathcal{M})$. Let $1 \leq p < \infty$. Assume that S is subadditive. If S is simultaneously of weak type (p, p) with constant C_p and of type (∞, ∞) with constant C_∞ , then for an Orlicz function Φ with $p < p_\Phi \leq q_\Phi < \infty$, there exists a positive constant C depending only on C_p, C_∞, p_Φ and q_Φ , such that

$$\tau \left[\Phi \left(\sup_{n}^{+} S_{n}(x) \right) \right] \le C \tau \left[\Phi(x) \right], \qquad (3.1)$$

for all $x \in L^+_{\Phi}(\mathcal{M})$.

Doob inequality

Let \mathcal{M} be a finite von Neumann algebra with a normalized normal faithful trace τ . Let $(\mathcal{M}_n)_{n\geq 0}$ be an increasing sequence of von Neumann subalgebras of \mathcal{M} such that $\cup_{n\geq 0}\mathcal{M}_n$ generates \mathcal{M} (in the w^* -topology).

 $(\mathcal{M}_n)_{n\geq 0}$ is called a filtration of \mathcal{M} . The restriction of τ to \mathcal{M}_n is still denoted by τ . Let $\mathcal{E}_n = \mathcal{E}(\cdot|\mathcal{M}_n)$ be the conditional expectation of \mathcal{M} with respect to \mathcal{M}_n . Then \mathcal{E}_n is a norm 1 projection of $L_{\Phi}(\mathcal{M})$ onto $L_{\Phi}(\mathcal{M}_n)$ and $\mathcal{E}_n(x) \geq 0$ whenever $x \geq 0$.

A noncommutative L_{Φ} -martingale with respect to $(\mathcal{M}_n)_{n\geq 0}$ is a sequence $x = (x_n)_{n\geq 0}$ such that $x_n \in L_{\Phi}(\mathcal{M}_n)$ and

$$\mathcal{E}_n(x_{n+1}) = x_n$$

for any $n \ge 0$. Let $||x||_{\Phi} = \sup_{n \ge 0} ||x_n||_{\Phi}$. If $||x||_{\Phi} < \infty$, then x is said to be a bounded L_{Φ} -martingale.

Doob inequality

Theorem (B-Chen-Osękowski)

Let \mathcal{M} be a finite von Neumann algebra with a normalized normal faithful trace τ , equipped with a filtration $(\mathcal{M}_n)_{n\geq 0}$ of von Neumann subalgebras of \mathcal{M} . Let Φ be an Orlicz function and $x = (x_n)$ be a noncommutative L_{Φ} -martingale with respect to (\mathcal{M}_n) . If $1 < p_{\Phi} \leq q_{\Phi} < \infty$, then

$$\tau \left[\Phi \left(\sup_{n}^{+} x_{n} \right) \right] \approx \tau \left[\Phi(|x|) \right].$$
(4.1)