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1 Cuculescu (1971) proved the Doob inequality of weak type
(1, 1) for noncommutative martingales.

2 Junge (2002) established the Doob inequality of type (p, p)
for noncommutative martingales.

3 Junge/Xu (2007) proved the maximal ergodic inequalities on
noncommutative Lp-spaces.

Aim

Our goal is to prove the noncommutative analogue of the Doob
inequality for convex functions of maximal functions.

For this, we establish a Marcinkiewicz type interpolation theorem
for convex functions of maximal functions in the noncommutative
setting.
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Noncommutative Orlicz spaces

Let N be a semifinite von Neumann algebra acting on a Hilbert
space H with a normal semifinite faithful trace ν. Let L0(N )
denote the topological ∗-algebra of measurable operators with
respect to (N , ν). The topology of L0(N ) is determined by the
convergence in measure.
For x ∈ L0(N ) we define

λs(x) = τ(e⊥s (|x|)) (s > 0)

and

µt(x) = inf{s > 0 : λs(x) ≤ t} (t > 0),

where e⊥s (|x|) = e(s,∞)(|x|) is the spectral projection of |x|
associated with the interval (s,∞). The function s 7→ λs(x) is
called the distribution function of x and µt(x) is the generalized
singular number of x.
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Noncommutative Orlicz spaces

Let Φ be an Orlicz function on [0,∞), i.e., a continuous increasing
and convex function satisfying Φ(0) = 0 and limt→∞Φ(t) =∞.
Recall that Φ is said to satisfy the 42-condition if there is a
constant C such that Φ(2t) ≤ CΦ(t) for all t > 0. In this case, we
write Φ ∈ ∆2.
Given an Orlicz function Φ, let

M(t,Φ) = sup
s>0

Φ(ts)

Φ(s)
, t > 0.

Define

pΦ = lim
t↘0

logM(t,Φ)

log t
, qΦ = lim

t↗∞

logM(t,Φ)

log t
.
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Noncommutative Orlicz spaces

The following characterizations of pΦ and qΦ hold

pΦ = sup
{
p > 0 :

∫ t

0
s−pΦ(s)

ds

s
= O(t−pΦ(t)), ∀t > 0

}
;

qΦ = inf
{
q > 0 :

∫ ∞
t

s−qΦ(s)
ds

s
= O(t−qΦ(t)), ∀t > 0

}
.

For an Orlicz function Φ, the noncommutative Orlicz space LΦ(N )
is defined as the space of all measurable operators x with respect
to (N , ν) such that

ν
(

Φ
( |x|
c

))
<∞

for some c > 0.
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Noncommutative Orlicz spaces

The space LΦ(N ), equipped with the norm

‖x‖Φ = inf
{
c > 0 : ν

(
Φ(|x|/c)

)
< 1
}
,

is a Banach space. If Φ(t) = tp with 1 ≤ p <∞ then
LΦ(N ) = Lp(N ). Note that if Φ ∈ 42, then for x ∈ L0(N ),
ν(Φ(x)) <∞ if and only if x ∈ LΦ(N ).
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Lp(M; `∞) spaces

Given 1 ≤ p <∞, recall that Lp(M; `∞) is defined as the space of
all sequences (xn)n≥1 in Lp(M) for which there exist
a, b ∈ L2p(M) and a bounded sequence (yn)n≥1 in M such that
xn = aynb for all n ≥ 1. For such a sequence, set

‖(xn)n≥1‖Lp(M,`∞) := inf
{
‖a‖2p sup

n
‖yn‖∞‖b‖2p

}
, (2.1)

where the infimum runs over all possible factorizations of (xn)n≥1

as above. This is a norm and Lp(M; `∞) is a Banach space.
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Lp(M; `∞) spaces

These spaces were first introduced by Pisier (1998) in the case
when M is hyperfinite and by Junge (2002) in the general case. It
is easy to check that

‖(xn)n≥1‖Lp(M,`∞) = inf

{
1

2

(
‖a‖22p + ‖b‖22p

)
sup
n
‖yn‖∞

}
,

(2.2)
the infimum taken over the same parameters as above.
We usually write∥∥sup

n

+xn
∥∥
p

= ‖(xn)n≥1‖Lp(M,`∞).
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Lp(M; `∞) spaces

Definition

Let Φ be an Orlicz function. Let (xn) be a sequence in LΦ(M).
We define τ [Φ(supn

+xn)] by

τ
[
Φ
(
sup
n

+xn
)]

:= inf

{
1

2

(
τ
[
Φ
(
|a|2
)]

+ τ
[
Φ
(
|b|2
)])

sup
n
‖yn‖∞

}
(2.3)

where the infimum is taken over all decompositions xn = aynb for
a, b ∈ L0(M) and (yn) ⊂ L∞(M) with |a|2, |b|2 ∈ LΦ(M), and
‖yn‖∞ ≤ 1 for all n.
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Lp(M; `∞) spaces

Proposition

Let Φ be an Orlicz function satisfying the 42-condition.

(1) If x = (xn) is a positive sequence in LΦ(M), then

τ
[
Φ
(
sup
n

+xn
)]
≈ inf

{
τ
[
Φ
(
a
)]

: a ∈ L+
Φ(M) such that xn ≤ a,∀n ≥ 1

}
.

(2) For any two sequences x = (xn), y = (yn) in LΦ(M) one has

τ
[
Φ
(
sup
n

+(xn + yn)
)]

. τ
[
Φ
(
sup
n

+xn
)]

+ τ
[
Φ
(
sup
n

+yn
)]
.
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Lp(M; `∞) spaces

Remark

For a sequences x = (xn) in LΦ(M), set∥∥∥sup
n

+xn

∥∥∥
Φ

:= inf

{
λ > 0 : τ

[
Φ
(

sup
n

+xn
λ

)]
≤ 1

}
.

One can check that ‖supn
+xn‖Φ is a norm in x = (xn). Define

LΦ(M; `∞) :=

{
(xn) ⊂ LΦ(M) : τ

[
Φ
(

sup
n

+xn
λ

)]
<∞ ∃λ > 0

}
,

equipped with ‖(xn)‖LΦ(M;`∞) = ‖supn
+xn‖Φ. Then

LΦ(M; `∞) is a Banach space. For 1 ≤ p <∞, if Φ(t) = tp then
LΦ(M; `∞) = Lp(M; `∞).
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interpolation

Definition

Let 1 ≤ p0 < p1 ≤ ∞. Let S = (Sn)n≥1 be a sequence of maps
from L+

p0
(M) + L+

p1
(M) 7→ L+

0 (M).

(1) S is said to be subadditive, if for any n ≥ 1,

Sn(x+ y) ≤ Sn(x) + Sn(y), ∀x, y ∈ L+
p0

(M) + L+
p1

(M).

(2) S is said to be of weak type (p, p) (p0 ≤ p < p1) if there is a
positive constant C such that for any x ∈ L+

p (M) and any
λ > 0 there exists a projection e ∈M such that

τ(e⊥) ≤
(
C‖x‖p
λ

)p

and eSn(x)e ≤ λ, ∀n ≥ 1.
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interpolation

(3) S is said to be of type (p, p) (p0 ≤ p ≤ p1) if there is a
positive constant C such that for any x ∈ L+

p (M) there exists
a ∈ L+

p (M) satisfying

‖a‖p ≤ C‖x‖p and Sn(x) ≤ a, ∀n ≥ 1.

In other words, S is of type (p, p) if and only if
‖S(x)‖Lp(M;`∞) ≤ C‖x‖p for all x ∈ L+

p (M).
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interpolation

Theorem (B-Chen-Osȩkowski)

Let S = (Sn)n≥0 be a sequence of maps from
L+

1 (M) + L+
∞(M) 7→ L+

0 (M). Let 1 ≤ p <∞. Assume that S is
subadditive. If S is simultaneously of weak type (p, p) with
constant Cp and of type (∞,∞) with constant C∞, then for an
Orlicz function Φ with p < pΦ ≤ qΦ <∞, there exists a positive
constant C depending only on Cp, C∞, pΦ and qΦ, such that

τ

[
Φ

(
sup
n

+Sn(x)

)]
≤ Cτ [Φ(x)] , (3.1)

for all x ∈ L+
Φ(M).
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Doob inequality

Let M be a finite von Neumann algebra with a normalized normal
faithful trace τ. Let (Mn)n≥0 be an increasing sequence of von
Neumann subalgebras of M such that ∪n≥0Mn generates M (in
the w∗-topology).
(Mn)n≥0 is called a filtration of M. The restriction of τ to Mn is
still denoted by τ. Let En = E(·|Mn) be the conditional
expectation of M with respect to Mn. Then En is a norm 1
projection of LΦ(M) onto LΦ(Mn) and En(x) ≥ 0 whenever
x ≥ 0.
A noncommutative LΦ-martingale with respect to (Mn)n≥0 is a
sequence x = (xn)n≥0 such that xn ∈ LΦ(Mn) and

En(xn+1) = xn

for any n ≥ 0.
Let ‖x‖Φ = supn≥0 ‖xn‖Φ. If ‖x‖Φ <∞, then x is said to be a
bounded LΦ-martingale.
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Doob inequality

Theorem (B-Chen-Osȩkowski)

Let M be a finite von Neumann algebra with a normalized normal
faithful trace τ, equipped with a filtration (Mn)n≥0 of von
Neumann subalgebras of M. Let Φ be an Orlicz function and
x = (xn) be a noncommutative LΦ-martingale with respect to
(Mn). If 1 < pΦ ≤ qΦ <∞, then

τ

[
Φ

(
sup
n

+xn

)]
≈ τ [Φ(|x|)] . (4.1)
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